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Abstract

AN EXPERIMENTAL INVESTIGATION OF ACOUSTIC
CAVITATION IN GASEOUS LIQUIDS

GAITAN, DARIO FELIPE. B, S., University of Southwestern Louisiana,
1984, Ph. D, , University of Mississippi, 1990. Dissertation
directed by Dr. Lawrence A. Crum.

High amplitude radial pulsations of a single gas bubble in several glycerine and
water mixtures have been observed in an acoustic stationary wave system at
acoustic pressure amplitudes as high as 1.5 bars. Using a laser scattering
technique, radius-time curves have been obtained experimentally which confirm
the absence of surface waves. Measurements of the pulsation amplitude, the
timing of the major bubble collapse, and the number of rebounds have been made
and compared with the theory. From these data, calculations of the internal gas
temperature and pressure during the collapse have been performed. Values of at
least 2,000 K and 2,000 bars have been obtained using a sophisticated model of
: pherically symmetric bubble dynamics. Simultaneously, sonoluminescence (SL),
a phenomenon discovered in 1933 and attributed today to the high temperatures
and pressures generated during the collapse of the bubbles, were observed as short
light pulses occurring once every acoustic period. The light emissions can be seen
to originate at the geometric center of the bubble when observed through a
microscope. Also, the simultaneity of the light emissions and the collapse of the
bubble has been confirmed with the aid of a photomultiplier tube. This is the first
recorded observation of SL generated by a single bubble. Comparisons of the
measured quantities have been made to those predicted by several models. In
addition, the implications of this research on the current understanding of
cavitation related phenomena such as rectified diffusion, surface wave excitation
and sonoluminescence are discussed. Future experiments are suggested .
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Chapter I
Introduction

L A. Statement of the Problem

The subject of this dissertation is the dynamics of bubbles in acoustic
cavitation fields of moderate intensities. For the purpose of this study, acoustic
cavitation may be defined as the formation and pulsation of vapor or gas cavities or
bubbles in a liquid through the negative pressure half cycle of a sound field. A
particularly interesting phenomenon associated with the violent pulsations of gas
bubbles is a weak emission of light called sonoluminescence. This light emission
has been attributed to the high temperatures generated during the rapid
compression of the bubbles, brought about hy the action of the sound field. Despite
the extensive amount of research done on both acoustic cavitation and
sonoluminescence, many important questions relating to the nature and
dynamics of these phenomena remain unanswered, Attesting to this uncertainty
is the multiplicity of existing models describing the mechanisms of light
production as well as the number of conflicting views and observations of
cavitation-related phenomena found in the literature.

The motivation behind this research -vas to answer questions such as: What
is the motion of the light-emitting cavities involved in sonoluminescence ? How

applicable are the present theories of single, spherical bubble dynamics in

describing these cavities ? What are the physical conditions attained in the




interior of the bubbles during the collapse ? Is it possible to detect
sonoluminescence from a single pulsating bubble ? Answers to these questions
have been pursued for over 50 years and, needless to say, complete answers to all
of them have not been found here. In the process of secking those answers,
however, some experimental observations were made which have clarified some of
the past and praseat research in this field, It is my hope that some of these

observations will point to new directions that future researchers may follow.

L B. {iisiorical Perspective

Cavitation was first predicted by Leonhard Euler in 17564 when he suggested
that, if the velocity in a liquid was high enough, negative pressures could be
generated and the liquid might "break". This "breaking" was given the name
“cavitation" in 1895 by R.E. Froude, an English naval architect, to describe the
appearance of voids and clouds of bubbles around propellers rotating at high
speeds. Since then, the term "cavi.ation" has been used to describe the
appearance of voids or bubbles when liquids are sufficiently stressed.

The first theoretical treatment of cavitation was made by Lord Rayleigh in
1917, In it, he derived an cquation to describe the motion of a vapor-filled cavity in
a liquid, In this cavity, called a Rayleigh cavity, the internal pressure was less
than the ambient pressure, and they both remained constant. By its definition,
this cavity could not be in equilibrium with the surrounding liquid and began to

collapse immediately. Although very simplistic, this model has been used

successfully to represent cavities formed by rotating propellers and, more




generally, by hydrodynamic cavitation. No further improvements to Rayleigh's
theory were made until more than 30 years later, with the introduction of acoustic
cavitation,

The first systematic study of acoustic cavitation was published by Blake in
1949, In it, Blake describes the formation of bubbles in the focal region of a
parabolic projector where sound waves were made to converge. According to
Blake, bubbles in the cavitation region moved erratically and, if the amplitude
were high enough, they emitted a hissing noise., This hissing, he postulated, was
generated by cavities collapsing under the action of the sound field, These cavities
were used to explain a particularly interesting effect of acoustic cavitation that had
been observed 15 years before, When ultrasound of sufficiently high intensity was
passed through a liquid saturated with gas, a weak emission of light was
observed. This effect was called sonoluminescence, i.e., light "produced" by

gound.

L. B. 1. Models of Sonoluminescence

First observed by Marinesco et al. in 1933, soncluminescence (SL) was
discovered when photographic plates became exposed when submerged in an
insonified liquid, It was not until 1947, however, that Paounoff et al. showed that
the exposure of the plates occurred at the pressure antinodes of the standing wave
field. The first attempt to explain this phenomenon was made by Zimakov in 1934,
After studying SL from various aqueous solutions, he concluded that the emission

was caused by an electric discharge between vapor cavities and the glass wall of




the container. Frenzel and Schultes (1935), after noticing that light was not
emitted from degassed water, concluded that the emission was caused by friction
between cavitating bubbles and water. Chamber (1936) studied SL from 36
different liquids at an insonation frequency of 10 kHz and was the first to observe
light emission from nonaqueous solutions. He also established an inverse
relationship between SL intensity and the ambient liquid temperature. Based on
his observations, he postulated the first formal model of SL known as The
Triboluminescent Model, This model suggested that SL was generated by the
sudden destruction of the quasi-crystalline structure of the liquid, a process
similar to the one observed when many crystals are crushed. Since the breaking
of the structure occurred during the cavity formation, this model predicted the
light emisgsion to occur during the expansion phase of the acoustic cycle.

A year later, Levshin and Rzhevkin (1937) concluded that SL originated in the
gas phase (and not in the liquid) after observing that potassium iodide and
pyrogallol, a quencher of photoluminescence in the liquid, did not quench
sonoluminescence, whereas CO,, a gas quencher, did. They also proposed that SL
was caused by an electric discharge resulting from the liquid rupture which
excites the vapor filling the cavities, producing sonoluminescence. This theory
was further developed by Harvey (1939), who suggested that these electric charges
were balloelectric in nature; i.e., they were produced by an increase in the surface
charge of fluids. Harvey's model, known as The Balloelectric Model, draws an
analogy with the mechanism through which water droplets in a gas become
charged, as occurs in rain and waterfalls. By suggesting the inverse

phenomenon, i.e., charged bubbles in a liquid, Harvey postulated that an electric




field exists in the surrounding liquid which increases as the bubbles are
compressed until a discharge occurs, giving rise to a weak emission, This mode],
therefore, predicted the light to be emitted during the compression phase of the
sound field.

Another model, also based on the existence of electric ¢harges on the walls of
cavities, was that of Frenkel (1940) called The Microdischarge Model, It postulated
that statistical variations of the charge distribution on the lens-shaped cavity
formed by the rupture of the liquid created regions of opposite charge on the cavity
wall, As the cavity expanded, it became spherical causing the electric field within
it to strengthen until a discharge occurred during the expansive phase of the
sound field.

In 1949, Weyl and Marboe proposed that the light was emitted by the radiative
recombination of ious created as the quasi-crystalline structure of the liquid was
destroyed at the newly created surface of an expanding bubble. This model was
called The Mechanochemical Model of sonoluminescence.

Several criticisms have becn made to these early models, mainly due to the
observed lack of sensitivity of the light emission to the electrical conductivity of the
liquid, which would be expected to affect the electric charge formation. In fact, SL
is often enhanced by the addition of electrolytes (Negishi, 1961) and is particularly
strong in mercury (Kuttruff, 1650). Also, these models suggest that cavitation
arises from molecular ruptures whereas, at moderate acoustic intensities,
cavitation is known to occur from the growth of stabilized gaseous nuclei (Atchley

et al., 1984),




Despite the strong evidence against models of SL based on electrical
discharges, new models are still being introduced. In 1974, Degrois and Baldo
proposed the "new electrical hypothesis" in which churge on gas bubbles arises
from the neutralization of anions on the bubble surface by gas molecules adsorbed
on the inside of the gas-liquid interface. The electrical field is generated as the gas
raolecules become polarized due to their asymmetric surroundings. As the bubble
collapses, the charge density increases until it exceeds a critical value, at which
point a discharge of electrons occurs from the inside of the interface into the
liquid. This model has been called The Anjon Discharge Model. A thorough
review of this hypothesis has been given by Sehgal and Verral (1982), in which they
show how this model disagrees with the experimental data.

More recently, Margulis (1984) has proposed a new electric charge model in
order to explain some experimental facts such as the observation of electric pulses
in an insonated liquid (Gimenez, 1982), SL flashes during the expansion phase of
the sound field (Golubnichii et al,, 1970) and sonoluminescence and sonochemical
reactions in low frequency acoustic fields (Margulis, 1982, 1983). These facts,
however, have only been observed by a few investigators and constitute a very
small percentage of all the available data on sonoluminescence. Margulis' model
is based on the accumulation of charge on a small neck of a "fragmentation
bubble" which is still attached to the parent bubble. Fragmentation bubbles are
caused by spherical instabilities of the pulsating bubbles. The transfer of charge is
effected through the liquid stream passing around the bubble neck at high speeds.

After almost 20 years of investigation, it became clear to researchers that gas

bubbles played a significant role in cavitation and the generation of




sonoluminescence. Thus, a practical model for the motion of these bubbles was
necessary to further advance the understanding of cavitation-related phenomena.
To this end, Noltingk and Neppiras (1950) developed the first theory of acoustic
cavitation. The theory used Rayleigh's equation as a starting point, adding to it a
term for an internal pressure due to the gas inside the bubble, a variable pressure
term applicable to acoustic fields as well as the effect of surface tension. They
obtained an ordinary differential equation describing the radial motion of a gas
bubble in terms of the pressure amplitude and frequency of the sound field as well
as the equilibrium radius of the bubble. Their contribution became the first
significant improvement to the theory since Rayleigh's seminal paper in 1917,
Based on their theory, Noltingk and Neppiras introduced The Hot Spot Model
of sonoluminescence. This model is based on the adiabatic heating of the cavity
contents. They proposed that, during cavitation, a gaseous nucleus grows slowly
and isothermally by the action of the sound field, until reaching a maximum
radius, R,,... At this point, the bubble collapses rapidly, causing the gas inside to
heat up to incandescent temperatures. The maximum temperature reached

inside tae bubble is given by

)

Ty =T. (Bm
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where T, is the ambient temperature, R, the minimum bubble radius at the end

of the collapse and y the ratio of the specific heat capacities. The gas is then

assumed to radiate like a blackbody.




After integrating the differential equation for the bubble motion for several
sets of parameters, Noltingk and Neppiras found that conditions for cavitation
(high presrures and temperatures both inside and outside the bubble) would only
occur for nuclei less than resonance size (defined later in Chapter III). They also
concluded that cavitation was restricted not only to a finite range of insonification
frequencies and nucleus equilibrium sizes, but also to a fixed range of ambient
and acoustic pressure amplitudes. Their theory was very successful in explaining
many of the observations of SL such as the decrease in SL intensity as the
frequency and ambient pressure were increased as well as the increase in SL
intensity as the acoustic pressure amplitude was increased. It also explained the
dependency of SL intensity on the type of gas dissolved in the liquid. Guses with
larger values of ¥ (monatomic gases) were predicted to emit more light due to the
higher temperatures reached in the interior, as can be seen from equation 1.1 and
confirmed by experimental observations. The theory also showed that lower
internal pressures were obtained with monatomic gases than with polyatomic
gases (air and CQO,, for example}, indicating that SL was primarily the result of
high temperatures rather than high pressures.

The Hot Spot model, however, failed to explain the observed difference in SL
intensity among the inert gases, in which the gases with larger atomic weight
generated more light. As originally postulated, the Hot Spot model did not
consider the heat flow to the surroundings during the short collapse time of the
cavity. In order to explain the experimental evidence, Hickling (1963) was the first
to quantify this effect by considering a model of a spherical cavity containing a

thermally conducting ideal gas in an incompressible liquid. Although having the




same value of y, the heavier gases were less thermally conducting dus to their
smaller molecular velocities. Using this model, he successfully explained the SL
intensity dats for several gases.

A variation of the Hot Spot model was proposed by Jarman (1960), in which
shock waves in the gas undergoing multiple vetlections at the bubble wall were
responsible for the light emigsions. The luminescence emitted by this mechanism
is thermal in origin, with small contributions due to Bremsstrahlung and
recombination of ions. This model is very similar in principle to the model
proposed by Noltingk and Neppiras. In addition, the conditions necessary for the
formation of shock waves are not often realized, as will be shown in Chapter III.

Numercus experiments with ultrasound using different liquids and gases
had provided evidence that chemical reactions occurred during cavitation and,
especially, during light emission. Spectral studies of sonoluminescence in
aqueous solutions of electrolytes (Gunther, 1957b) had indicated the emission of
lines and bands characteristic of metal radicals superimposed on a background
continuum which suggested that other sources of radiation were present in
addition to the blackbody. To Griffing (1950, 1952), these observations suggested
that SL was in fact a chemiluminescence. She then proposed The
Chemiluminescent Model in which the high temperatures generated inside the
collapsing cavity gave rise to oxidizing agents such as H,O, through thermal
dissociation which then dissolved in the surrounding liquid causing further
reactions, scme of a chemiluminescent character.

The ideas introduced by the Hot Spot and Chemiluminescent models are

considered today the accepted explanation of the phenomenon of
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sonoluminescence. These ideas have been further confirmed during the course of
this investigation.

In 1957, Gunther (1957b) observed for the first time that SL was emitted as
short flashes of light, lasting 1/10th to 1/560th of an acoustic period. If enough SL
were being produced, i.e., if the acoustic intensity were sufficiently high, the
flashes were seen to occur periodically, with the same frequency as that of the
sound field, Several measurements of the phase of the light emission relative to
the sound field have been made aince its discovery. When these measurements
failed to provide consistent results, researchers attempted to measure the phase of
SL with respect to the bubble motion, some with relative success. Brief

descriptions of these measurements are given in the next Section.

I. B. 2. The Phase of Sonoluminescence

During the late 1950's and early 1960's, several experiments were performed
in an attempt to determine the relationship between the phase of SL emission and
the phase of the sound field. The motivation behind these experiments was to
discriminate among the different models based on the opposite predictions on the
phase of the SL emistion, some of which have been sumimarized in Table 1. As
shown in this Table, the Triboluminercence, Microdischarge and
Mechanochemical models all predict the light to be emitted during bubble growth.
Although it was not known then, the phase of SL relative to the sound field is

dependent on the exprrimental conditions such as the insonation frequency, the

initial bubble radii and the liquid parameters. Nevertheless, the phase of SL can
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be used to calculate a range of equilibrium radii of the bubbles emitting light in a
particular experimental arrangement, assuming a constant acoustic pressure
amplitude, as will be shown later. 'This fact was first used by Macleay and

Holroyd (1961) in their experiment.

Table 1. The phase of SL predicted by the different models.

Sonoluminescence O SL during bubble growth
Model ¢ SL during bubble coliapse

Triboluminescence ..., O

Balloelectric ..., ®

Microdischarge ....ccoovviiiinniiinneene O

Mechanochemical .....ccovuviierieennnn, 0]

Anion Discharge ...,

Hot-spot .. ®

Chemiluminescence .........ccooiiireenns .

The first attempt to measure the phase of SL relative to the sound field was
made by Gunther et al. (1957a), They were the first to use a PMT to examine SL
emissions from a standing wave field at 30 kHz. Using a cathode ray oscilloscope,
they noted that SL was emitted from the pressure antinodes and that it occurred
near the end of the compression phase i.e., 360" measured from the negative-going
part of the sound cycle. A year later, in 1958, Wagner used a similar experimental
arrangement and found, unlike Gunther et al. (1957a), that SL was emitted close
to the sound pressure minimum (90°) in Kr-saturated water. The duration of the

emission was found to depend on the ambient pressure pos, the acoustic pressure

amplitude p4 and the solution temperature, but it was usually less than one tenth

of an acoustic period. This disagreement prompted other researchers to
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investigate the issue of the phase of SL further. Using a cylindrical transducer
driven at 16.5 kHz to produce an axial pressure antinode in a stationary wave
system, Jarman (1959) found that SI. was emitted close to the sound pressure
minimum (90°) in non-volatile liquids like water, in agreement with Wagner
(1958). In volatile liquids, he found that SL was emitted near the sound pressure
maximum (270°). To further complicate the picture, Golubnichii et al. (1970) found
that emission occurred close to the beginning of the compression phase (180°), its
exactl location depending on the sclvent.

It was not until 1961 that researchers began to use theoretical calculations of
bubble motion to predict the nroperties of cavitation fields. An interesting
experiment was performed by Macleay and Holroyd (1961), in which they used the
theory of Noltingk and Neppiras (1950) to predict the phase of 8L (i.e., bubble
collapse) for a range of initial bubble radii. In addition, by assuming that the SL
intensity was proportional to R2,;,T¢p.x (Where R, and T,,,. are the bubble
radius and the temperature respectively during SL emission) and that bubbles of
all sizes were present in the liquid, they were able to deduce an SL intensity
distribution as a function of the phase of SL emission. This distribution ranged
from 180 to 350 degrees with a well defined peak around 270 degrees. When
compared with the experimental data, agreement was surprisingly good.
According to their calculations, the peak at 270° corresponded to a bubble radius of
about 2 microns at 400 kHz and 1.8 bars of pressure amplitude.

It is now known that the phase of bubble collapse depends on several
parameters such as the driving frequency, pressure amplitude and equilibrium

bubble radius. Also, as noted by Jarman and Taylor (1970), the most likely cause of
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this widespread disagreement was the use of poorly characterized hydrophones
and of electronics which introduced unknown phase shifts, After calibrating all
their electronics properly, Jarman and Taylor (1970) performed what were then
the most careful measurements of the phase of S8L. Using a cylindrical
piezoelectric transducer driven at 14,4 kHz, they found that most SL flashes
occurred around 360°. Using the theory of Noltingk and Neppiras, they calculated
the phase to correspond to bubbles of resonance size of 220 microns. In addition,
they reported results at 23 kHz with the phase of most SL flashes occurring around
290°. They also found secondary flashes usually occurring a short time after the
main flash which they attributed to bubble rebounds.

The results of these experiments, as reported by the different authors, have
been summarized in Table 2. The phase of SL is measured from the negative-
going part of the sound cycle and R, is the equilibrium radius corresponding to the
measured phase of SL reported by the authors. In most cases, the pressure
amplitude was not known or not reported, which in part explains the large
discrepancies among the different results. This also makes it impossible to
explain these discrepancies in light of the new, more accurate bubble dynamics
models.

Interestingly, the results of Macleay et al. are the most consistent with the
results of the present study despite the different experimental arrangement.
However, as pointed out by Jarman and Taylor (1970), the high frequency used in
their experiments provided a poor resolution of phase. Further comparisons will

be made in Chapter IV,




14

Table 2. Summary of measurements of the phase of sonoluminescence.

Insonation Pressure Host Phase of Bubble

frequency  Amplitude Liquid SL Radius ,R,
Experiment (kHz) (bars) (degrees) (hm)
Gunther et al. (1957a) 30 - H,0O 360
Wagner (1968) 30 - H,0 20
Macleay et al. (1961) 400 1.8-2.8 H,0 270 0.3-3
Jarman et al.(1970) 144 22 H,0 360 220
" " 23.3 - H,0 90
Gaitan (1990) 2 1.1-1.3 H,0 190-210 1520
" 2125 1116 H,O/GLY  200-250 15-20

In view of the inability to obtain a unique value of the phase of SL, researchers
opted to study how SL varied with the bubble volume rather than with the acoustic
pressure. The first attempt was made by Meyer and Kuttruff in 1959 who
produced cavitation bubbles in ethylene glycol on the end of a nickel rod driven
magnetostrictively at 25 kHz. By illuminating the bubbles with a flash tube
triggered by the time-delayed SL flashes, they visually determined that the SL
flashes occurred during the bubble volume minima. Because the bubbles were
generated on the face of the transducer, i.e., near a solid boundary, they were most
likely collapsing asymmetrically. Although the phase of these bubbles may differ
from that of free, symmetrically collapsing bubbles, the experiment did provide
strong evidence that SL and the bubble collapse occurred simultaneously.

In 1960 another investigator, Negishi, made the first and only attempt

reported in the literature to obtain an experimental radius-time curve of
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acoustically driven cavitation bubbles using a dark-field illumination technique to
record the volume of the cavitation zone as a function of time. In his experiment,
he projected the image of the cavitation bubbles produced by a 28 kHz ferrite
transducer onto a screen, allowing some of the light to pass through a small hole
and strike a PMT., Although the light recorded by the PMT was not linearly
related to the volume of the cavitation bubbles, it was proportional to it, After
turning the light source off, he then recorded the SL emission during cavitation.
With this apparatus, Negishi (1960,1961) was able to determine the phases of the
radial maxima and minima and, plotting these simultaneously with the PMT
output, he demonstrated that the SL flashes coincided with the minimum bubble
cloud volume, Recent studies have shown, however, that bubble clouds behave in a
collective manner and their motion is, therefore, different from that of a single
bubble.

Other techniques have been designed to investigate collapsing bubbles,
although the bubbles were not acoustically driven. Two of these techniques
utilized laser and spark-induced cavitation which allowed the position of the
bubble to be predicted, as vpposed to acoustic cavitation where cavitation events
occurred essentially at random locations in the liquid. In both of these techniques
a loeal portion of the liquid is heated to high temperatures very rapidly, creating a
vapor cavity instantaneously. As the cavity expands, the vapor cools quickly
allowing the liquid to collapse in the manner of a Rayleigh cavity (see chapter III),
In addition to recording radius as a function of time, researchers have detected

sonoluminescence flashes emitted during the collapse. In 1971, Buzukov and

Teslenko, using a light scattering technique similar to Negishi's, obtained the
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radius-time curve of a collapsing cavity produced by a single pulse from a ruby
laser. When it was focused on a point in a liquid, a pulsating bubble was created
from which a short flash of light was emitted in coincidence with the minimum
bubble radius during the first compression of the bubble, Simultaneously with the
bubble collapse, they also detected acoustic emissions in the form of shock waves.
A second experiment was performed by Benkovskii et al, in 1974 using spark-
induced cavitation, In this case, cavities were produced in two different
experiments by rapidly melting a thin tungsten wire underwater and by an
electric spark produced between two electrodes immersed in a test liquid.
According to Walton et al. (1984), Benkovskii (1974) obtained results similar to
those of lager-induced cavitation using a pulse of 100 kV and 5.10-8 sec duration
applied to point-electrodes 1 mm apart. In addition to the first flash, SL flashes
occurred during the second and even third collapse. Furthermore, Golubnichii e¢
al. (1979) claimed that with spark-induced cavitation the SL flash does not coincide
with the minimum volume of the bubble. A discrepancy of 12 psec was reported in
water but only 1-2 psec in glycerine and ethylene glycol. More recently,
researchers have been able to photograph laser-induced cavities with high speed
cameras using conventional and holographic photography. Frame rates as high

as 300,000/sec have been achieved by Lauterborn et al. (1986) in his study of laser-

induced cavity collapse, and much has been learned from their observations.
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L. B. 8. Sonoluminescence as a Probe of Acoustic Cavitation

Most of the previous studies of SL have focused on the determination of its
mechanism. Unfortunately, little effort had been made, until recently, to use this
phenomenon to study the physical conditions attained during cavitation . Since SL
is generated by cavitation, information on the properties of the interior of the
cavitation bubble during collapse can be extracted from SL, assuming that the
light is emitted during the collapse. A few measurements of temperature and
pressure were made by researchers, however, using the characterislics of the
emitted light., Parameters such as wavelength of maximum emission and
bandwidth at half the maximum intensity (FWHM) have been measured in order
to determine the density (relative to the equilibrium conditions) of the emitting
species. Since one of the results of the present study has been a determination of
the minimum temperature and pressure inside a cavitation bubble necessary to
generate SL, a review of previous measurements will be given next. It should be
noted, however, that the spread of the emitted light spectrum on which some of
these measurements are based may be due to the inhomogeneity of the cavitation
field, as pointed out by Sehgal et al. (1979, 1980). Cavitation is 4 dynamic process,
and the temperature and pressure fields inside the bubbles fluctuate within a
large range of values as the bubbles expand and collapse. SL may be emitted at
slightly different stages of the bubble motion, in which case the physical conditions

would be different at the time of the light emission, The inhomogeneity of the

cavitation field during which these measurements were made also implies that
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bubbles of different sizes would be present, reflecting a variety a physical
conditions.

Previous measurements of relative densities, temperatures and pressures of
the gas during cavitation have been summarized in Table 3. In this Section, the
experiments and the results are described briefly., A full discussion of the results
will not be given until Chapter IV.

Table 3. Summary of measured relative densities, temperatures and
pressures inside cavitation bubbles.

Temperature  Pressure Relative
Reference (Kelvin) (bars) Density Ry/Ryin
Taylor et al. (1970) 10,000+ 2,000® ~60 ¢ 394
(f=16 kHz, Argon)
Golubnichii et al. (1979) 9,000® 19,000 ~ 600¢ 30¢
(spark-induced)
Sehgal et al. (1979) 240" a10® ~40° 344
(f=459 kHz, Argon)
Sehgal et al. (1980)
(f=459kHz) NO- 1350 < 5.9e
(f=489 kIlz) NO,- 860¢ - --- 9.7
Suslick et al. (1986b,1990) 5200 ¢ 500 .-

(f=20 kHz, Argon)

Blackbody spectrum measurement. “Calculated using ideal gns Law., ‘Measured (bold)
dCalculated from the relative density. “Calculated using Young's (1976) equation.

The first column contains the references as well as the insonation frequency
and dissolved gas used in the experiments. Note that lower temperatures are

expected for higher insonation frequencies because the resonance size of the
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bubbles is smaller, allowing more heat to escape into the liquid. The dissolved gas
is important when using the specific heat ralio (y) to calculate the temperatures
(y=5/3~1.67 for monatomic gases, and 7/56=1.4 for diatomic gases). Values in bold
type indicate experimental values, as opposed to values calculated based on
different assumptions, as indicated by the footnotes.

Taylor and Jarman (1970) measured relative densities (with respect to
equilibrium conditions) of about 60 in various argon-saturated aqueous solutions
at an insonation frequency of 16 kHz, These measurements were based on the
FWHM of the sodium D line. Assuming a temperature of 10,000 K - based on
blackbody spectral measurements - they deduced pressures of 2,000 bars from the
ideal gas Law. The determination of temperature by fitting the SL spectra to that
of blackbody radiation is now believed to be incorrect due to the chemiluminescent
rather that incandescent nature of the radiation, as Taylor and Jarman (1970)
have pointed out. Furthermore, even an adiabatic collapse would result in
temperatures of only ~ 5,000 K for a relative density of 60, and y=5/3.

Golubnichii et al. (1979) measured the collapse ratio (R, /Ry, Where R, is the
maximum radius attained by the vapor cavity) of spark-induced cavitation bubbles
using the shadowing technique. They obtained values of about 30 which
corresponded to adiabatic temperaiures of 9,000 K assuming that the vapor has
cooled to room temperature when R=R,. They also measured the maximum
absolute density reached during the collapse by introducing NaCl into the liquid (a
water-glycerine mixture) and measuring the pressure broadening of the sodium D

lines. This gave n=1.5-102 m3, from which they calculated 2 maximum pressure

of 19,000 bars using the ideal gas law.




More extensive investigations were made by Sehgal et al. at frequencies of 459
kHz, They made independent measurements of the relative density (Sehgal et al.
1979) and of the temperature (Sehgal ef al. 1980). The density measurement, like
Taylor's, was made by measuring the line shifts and FWHM of potassium
resonance peaks emitted by insonated aqueous solutions of alkali and halide salts
saturated with argon. They obtuined a value of the relative density (with respect to
the density of the medium at STP) of about 40, This corresponds to a collapse ratio
(Ro/ Rpin) of 3.4, where R, and R, are the initial and minimum bubble radius
reached during the collapse, respectively., Using an equation derived by Young
(1976) which compensates for thermal diffusion, they calculated the internal
temperature to be 2450 K and, from the ideal gas law, they calculated internal
pressures of 310 bars.

The measurement of temperature by Sehgal et al. (1980) was based on the
relative distribution of SL intensities from NO- and NO,- saturated aqueous
golutions. In their experiment, intracavity temperatures of 1350 50 K and 860 +
100 K for NO and NQ,, respectively were obtained. Collapse ratios were calculated
using Young's (1976) equation to be 5.9 and 9.7 respectively at an acoustic pressure
amplitudes of 6.2 bars,

A recent, more precise measurement of the temperature inside cavitation
bubbles has been made by Suslick et al. (1986a,b) using a comparative rate
thermometry technique in alkane solutions of metal carbonyls. The technique
consisted of measguring the reaction rates of the metal carbonyls as a function of

their concentration inside the cavitation bubbles. The change in concentration

was effected by increasing the bulk temperature of the solutions which increased




the vapor pressure of the metal carbonyls. The overall vapor pressure cf the
solutions was kept constant by using appropriate solvent mixtures. These
golutions were irradiated with a collimated 20 kMz beam from an amplifying horn.
Suslick et al. reported a maximum temperature of 5200 + 6560 K reached in the gas
phase. In addition, by extrapolating their results, they found a nonzero value of
the reaction rates corresponding to zero metal carbonyl concentration. Based on
this finding, they concluded that a reaction zone existed in the liquid phase with
an effective temperature of ~1900 K. The pressure amplitude used in their
experiment is not specified except for a total acoustic intensity at the horn's
surface of 24 W/em?2 For comparison, assuming plane waves in water, this

intensity corresponds to about 8 bars.

L B. 4. Acoustic Cavitation and Bubble Dynamics

Cavitation has generally been classified in two types: "T'ransient" and "stable"
(gaseous) cavitation. This classification traces its origin back when the first visual
observations of cavitation activicy were made (Blake, 1949, Willard, 1953), and was
introduced in order to describe these observations. Transient cavitation was used
to describe events that lasted only fractions of a second, usually occurring at high
pressure amplitudes. These events were attributed to vapor or gas bubbles which
expanded to large sizes during the negative part of the pressure cycle, after which
they began to collapse. Because of the large radius attained during the expansion,

their collapse was very rapid and violent, often resulting in the destruction of the

bubbles. Flynn (1964) attempted to defined these terms more precisely. According
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to him, a transient cavity is "that which, on contraction, from some maximum
size, its initial motion approximates that of a Rayleigh cavity..." whereas a s "le
cavity "oscillates nonlinearly about its equilibrium radius.". Flynn (1975b) 3
further refined this definition of transient and stable cavities in terms of the
equations of bubble dynamics. He defined two functions: an inertial function, -\,
and a pressure function, PF, which represent the inertial and pressure forces
controlling the bubble motion and which are functions of time, R, and p4. For
transient cavities, IF is much larger than PF and therefore the motion is inertia
controlled whereas the opposite is true for stable cavities. Flynn then defined a
transient cavitation (dynamical) threshold in terms of the expansion ratio,
R,../R,, i.e., the dynamics of bubbles pulsating with R, /R, above this threshold
are controlled by IF, whereas bubbles below thig threshold are controlled by PF.
After an extensive investigation of the thermal behavior of pulsating bubbles,
Flynn also introduced an expansion-ratio threshold for the occurrence of thermal
phenomena during cavitation (e.g. sonoluminescence). This threshold was based
on the fact that small bubbles tend to dissipate the internal heat generated during
collapse (isothermal motion), whereas large bubbles behave more adiabatically,
generating high temperatures in their interior. From his calculations, Flynn
concluded that small bubbles (< 5 um) reach the dynamical (transient cavitation)
threshold before exhibiting soncluminescence. Large bubbles (>5 um), on the
other hand, are able to generate high internal temperatures and therefore, exhibit
sonoluminescence before becoming a transient. It should be noted here that
becoming "transient’ does not necessarily mean that the cavity is not stable.

However, inertia-dominated cavities tend to collapse very rapidly, promoting



surface instabilities which often cause breakup. Therefore, when the dynamical
threshold is greatly exceeded, cavities are, in general, not expected to survive for
more than a few of cycles. Flynn's model of cavitation bubbles will be used to
explain some of the observations inade in this study. It will be shown that
observations of the thresholds for sonoluminescence and transient bubble motion
agree with this model.

As mentioned previously, several descriptions of the behavior of bubbles in
ultrasonically-induced cavitation fields were made during the early years of
cavitation research (Bluke, 1949; Willard, 1953; Neppiras et al., 1969). Neppiras
(1980), in his thorough review of acoustic cavitation, describes several types of
cyclic cavitation processes. These observations are presented in this Section as an
introduction to the study of long-term periodic behavior of the phase of the light
emitted by cavitation bubbles. It should be noted that Neppiras did not cite any
references when describing these observations and it was, therefore, not possible

to obtain the original works. Some of these observations are:

i. The gaseous cavitation cycle occurs when a bubble is made to grow by

rectified diffusion (see Chapter III), eventually reaching the transient cavitation
threshold (Flynn, 1964). Then, the bubble immediately expands, implodes and
disintegrates. The residual fragments may be either too small and dissolve
completely or start growing again by coalescence and rectified diffusion. This
process repeats itself, although not very regularly, since the bubbles are variable

in size. It can be observed in high-speed photography of cavitation in gassy liquids

by examining successive frames.




ii. The degassinz cyvele consists of bubbles growing, as in the case of the
gaseous cavitation cycle, by rectified diffusion in such a way that the conditions for
complete collapse never occur. Eventually the bubble will become large enough to
iloat to the surface, gradually causing the solition to become undersaturated.
This degassing can only occur within a restricted range of R, and p, and,
according to Neppiras (1980), its rate can be maximized by choosing appropriate
treatment conditions related to the bubble-size distribution.

iii, The resonance bubble cycle with emission of microbubbles. At sufficiently
high frequencies, bubbles reach their resonance size before separating out under
gravity. Bubbles of resonance size are highly likely to develop instabilities, exciting
surface modes of vibration. The strong surface vibrations are parametrically
excited at half the driving frequency and are strongly coupled to the radial
pulsations. In an intense field, the surface waves may grow to large amplitudes
and "throw off" microbubbles from the crests. This can occur very rapidly, the
parent bubble apparently exploding, which may explain the "disappearing
bubbles" reported by Nyborg and Hughes (1967). These microbubbles are usually
all equal in size, with radii near A,/4 where A, is the wavelength of the surface

oscillation (Neppiras, 1280).

L C. Recapitulation and General Overview of the Dissertation

The Hot Spot and Chemiluminescent models of the mechanism of light

production during cavitation (known as sonoluminescence) can explain the

majority of the experimental evidence. In addition, previous studies of acoustic




cavitation have provided many qualitative and semi-quantitative observations. In
particular, fairly convincing data exist which demonstrate the temporal
coincidence of the sonoluminescence emission and the collapse of bubbles.
Previous studies of cavitation, however, were limited to a general (statistical
average) description of the bubble field due to the inability to specify the bubble-size
distribution at any particular point in space or time. In a cavitation field, these
cavities or "nuclei" are constantly changing. For this reason, the correlation of
the light emission with the motion of a single bubble has not been possible, The
only correlation that has been made is bel veen the collective motion of the bubble
field and the light emission (SL), In addition, several observations of cyclic
cavitation processes indicate that cavitation bubbles may break up and coalesce in
a periodic manner, This dissertation is mostly a collection of experiments using
single- and multiple-bubble cavitation fields designed to advance our

understanding of acoustic cavitation and sonoluminescence.

The information contained in this dissertation has been organized in the
following manner. Chapter II contains a detailed description of the apparatus
and the experimental procedures used to acquire the data, including the
calibration methods.

Chapter III describes briefly the different mathematical models used to
describe the motion of acoustically driven bubbles. Three formulations of radial
pulsations of bubbles are presented: Keller-Miksis' (1980) with the polytropic

approximation, Prosperetti's (1986) and Flynn's (1975a) formulations. Some basic

concepts of nonlinear bubble dynamics are introduced which are necessary to




understand the results of the experiments. In addition, brief descriptions of the
equations describing shape oscillations of bubbles as well as the phenomenon of
rectified diffusion are presented.

In Chapter IV, the results of the different experiments are presented and
discussed including the observations of the stabilization process for a single
bubble. Rather than following the chronological order of the experiments, data
from the single-bubble experiments are presented first to make the interpretation
of the multi-bubble experimental results casier. Single-bubble data include the
radius-time curves and the phase of SL emission. Then, a study of the phase of SL
in multi-bubble cavitation fields is presented.

Finally, a summary of the dissertation, the conclusions drawn from the

experiments and some topics for future study are given in Chapter V.




Chapter II '
Apparatus and Experimental Procedure

0. A, Introduction

In this Chapter, the experimental method used to study cavitation bubbles is
described. The experiment is divided in two parts: 1) the measurement of the
radius-time curve of a single cavitation bubble was obtained and 2) the
measurement of the phase of the sonoluminescence (SL) emitted by single- and
multi-bubble cavitation relative to the phase of the pressure field as well as relative
to the bubble motion.

In both experiments, a levitation cell was used to oxcite a stationary wave
sound field in several glycerine/water mixtures. Using this apparatus, single-
and multibubble cavitation was generated at pressure amplitudes in the range 1.0
< ps < 1.5 bars. Several parameters associated with cavitation were measured
including the radial bubble pulsation amplitude, the phase of the bubble collapse,
and the number of rebounds at a fixed pressure amplitude, p,. In addition, the
phase of SL was monitored for long periods of time in order to study the behavior of
bubbles in cavitation fields,

In the first part of the experiment, a single bubble was levitated at a fixed
position in the levitation cell, while pulsating radially at large amplitudes. Light
from an Ar-Ion laser was scattered off the bubble and detected with a photodiode.

The amplitude of the scattered light, modulated by the large radial pulsations, was




converted to radius via an experimental transfer curve in which the bubble radius
was related to the scattered intensity. By this method, experimental radius-time
(R-t) curves of bubbles pulsating periodically (i.e., in a steady state) were obtained.
The radial pulsation amplitude, the timing of the bubble collapse, and the number
of rebounds were measured from the R-t curves,

In the second part of the experiment, SL from a single bubble was detected
with a photomultiplier tube in a light-tight enclosure. Then, by using an
intermediate reference, the emission of SL was correlated in time with the first
part of the experiment in order to obtain the phase of SL emission relative to the
bubble motion. It was determined that SL was emitted during the collapse of the
bubble. Finally, the phase of SL relative to the sound field in single- and
multibubble cavitation was monitored for long periods of time (thousands of
acoustic cyc] ‘8) in order to study the behavior of bubbles in cavitation fields. This
phase was measured with a time-to-amplitude converter and an analog-to-digital

data acquisition system based on a microcomputer,

IL B. Acoustic Levitation Apparatus

L Levitation Cells

The basic apparatus used in the experiments consists of two levitation cells,
one cylindrical and one rectangular, and their driving and controlling electronics.
This Section describes these components in some detail.

A levitation cell is a container filled with liquid in which a stationary acoustic

wave is excited. The radiation force (Crum, 1970) exerted on the gas bubble by the




stationary wave is used to counteract the hydrostatic or buoyant force, enabling the
bubble to remain suspended in the liquid indefinitely, effectively removed from all
boundaries. The cylindrical cell, shown in Fig, 1, is made from two 7.5 cm (3.0 in)
0.D. concentric piezoelectric cylindrical transducers joined together by a glass
cylinder of approximately equal dimensions. These cylindrical transducers were
poled to be driven primarily in the thickness mode. A thin Plexiglass disc was
glued to the bottom of the cell, providing a nearly free boundary at the frequencies
used in all the experiments, All the components were glued with a silicon-base
gel to ensure a water-tight enclosure while keeping all elements mechanically
decoupled. A pill-shaped transducer ( 0.5 cm dia, x 0.3 cm thick) was attached to
the outside of the glass in order to monitor the pressure amplitude and the phase
of the acoustic field in the cell.

In addition to the cylindrical cell, a rectangular levitation cell like the one
shown in Fig. 2 was built in order to photograph and observe the levitated bubbles
more clearly. These cells were constructed from one piece rectangular Pyrex
containers (Vitro Dynamics) 4.5 x 4.5, 5.1 x 5.1 and 6.0 x 6.0 cm? cross section and
12,0 ¢m long with the tep end open. A piezoelectric cylindrical transducer 6 ¢m in
diameter was glued to the bottom of each container with extra-rigid epoxy (Torr
Seal®) to provide good mechanical coupling, As with the cylindrical cell, a side
pill transducer was attached to a side wall in order to provide a non-invasive way
to monitor the acoustic pressure in the liquid. Although this type of cell was not as
stable in frequency and amplitude as the cylindrical type, it provided flat optical

surfaces through which gas bubbles could be observed with excellent clarity.
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For each experiment, the cell in use was filled with one of five different
water/glycerine mixtures and driven by a 78 watt Krohn-Hite amplifier (model
7500) connected to the cell by an impedance matching coil with an inductance of
approximately 4 mH, The amplifier was operated by a Hewlett-Packard 3312A
function generator which was controlled by an Isaac II process control and data
acquisition system. When driven at resonance, the levitation cells were capable of
generating up to 4 atmospheroes of peak pressure amplitude at the antinodes. The
cell was always driven at resonance during the experiments, usually between 20 to
25 kHz, depending on the mixture used. The particular stationary wave excited
was determined by the driving frequency. In all of the experiments (using the
cylindrical cell), a (7, 8, 2) mode of (1, 0, 1) was used. The 6 = 0 means the wave is
symmetric about the cylindrical axis, while r =2 = 1 means a single antinode
exists in the T and Z directions. In reality, however, an additional pressure
maximum was present near the top and bottom of the cell due to the less-than.
ideal-pressure-release boundaries. This, however, did not pose any experimental
problems, and all calibrations were done using the measured profiles rather than
the theoretical ones. The cell in use was mounted on a two degree of freedom
translation stage, providing 0.000393 cm (0.001") resolution and 2.5 em (1") travel
in the x and 2 direction with the use of manual micrometer drives. This
arrangement allowed the positioning of the bubble anywhere in the plane
perpendicular to the Ar-I laser, described in Section D of this chapter. The entire

apparatus, including the necessary optics with the exception of the laser, was

mounted on a 45 x 36 cm (1.5' x 3') optical table,




In order to keep the sido pill transducer calibrated, the system had to be
maintained to within 2 hertz of resonance. In addition, some of the experiments
required changes in pressure amplitude to be made quickly, accurately and
repetitively. For this purpose, the amplitude and frequency of the function
generator were controlled via the amplitude modulation (AM) and voltage
controlled oscillator (VCO) analog inputs. An Apple Ile computer with an Isaac
II data acquisition and control system wus used which enabled the operator to
control the system from a terminal keyboard, This data acquisition system also
served to provide a continuous reading of the acoustic pressure amplitude during
the experiments, This was done by reading the RMS -oltage from a Fluke 8600A
digital multimeter to which the pill transducer was connected. This voltage was
read via a GPIB interface by the Apple Ile computer, converted to units of
pressure and displayed on the CRT screen. Because the eystem had to be
recalibrated often, this feature provided an immediate value of the pressure in

order to efficiently check the system between calibrations.

IL. B. 2. Rise-time Measuring Apparatus

One of the methods used to determine the equilibrium size of the bubbles was a
rise-time technique described in the pressure calibration Section. This technique
required measuring the terminal rise velocity of the bubble when the sound field
was turned off. Thus, the time needed for the bubbles to rise through a known
distance was measured and recorded. The apparatus used to accomplish this wil

be doscribed in the next paragraph.
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Because the bubble sizes used were as small as 10 um, travel distances as
small as 100 um or less had to be measured. Thus, a calibrated Gaertner filar
micrometer microscope model M110A was used. The rise-time was measured
with a digital timer which was activated by the same push-button switch used to
turn the sound field on and off. A schematic diagram of this circuit is shown in
Fig. 8. This circuit worked as follows: when the switch was pressed, the counter
was started and the sound field was turned off, allowing the bubble to rise freely.
When the bubble had risen through a predetermined cistance, the switch was
released, turning the counter off and the sound field back on and bringing the
bubble back into the center of the cell. This apparatus was used in several of the

experiments described in this chapter when bubble sizes had to be measured,

Function Generator gﬁi‘;ﬁ“ttm

Levitaion
3 Cell

f ) @ Counter

Pulse Generator

Figure 3. Schematic diagram of risetime measurement apparatus.




When the Pyrex rectangular cell was used, the bubble radius was also
weasured with the filar micrometer microscope directly. The filar micrometer
used with a 20X magnification had a resolution of approximately + 5 pm. This
method provided an estimate of the bubble radius which allowed us to check on the

rise-time results if thermal currents were suspected to be present.

IL B. 3. Hydrophones

In order to calibrate the side pill transducers, two techniques were employed
which utilized two different hydrophones, Because these hydrophones could not be
used at pressures amplitudes above 0.5 bars without the risk of cavitation damage,
the pill transducers had to be calibrated at relatively low amplitudes. Extrapolated
values were then used during the experiments. This Section will describe these
hydrophones in more detail.

The first and most often used device was a needle shaped hydrophone built by
the author which will be referred to as NDL1. A cross section of this device is
shown in Fig. 4. Due to its small dimensions, it affected the sound field in the cell
very little as can be seen in Fig. & This figure is a plot of the side pill response vs
the depth of the hydrophone in the cell measured in ¢m from the bottom of the cell.
This hydrophone was built using a small cylindrical piezoelectric transducer
mounted on two concentric steel needles which provided a rigid support. The
center needle was connected to the inside pole while the outside needle was
connected to the outside pole of the transducer. This geometry provided good

electrical shielding as well as ease of construction, although it was possible that
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some of the acoustic energy could be coupled to the sensitive element through the
needles. This coupling was verified to have no significant effect on the linearity ¢f
the hydrophone, as can be scen in Fig. 6, where the hydrophone response has been
plotted vs the pill transducer response. The linearity of the pill transducer as a
function of the voltage to the driving cylindrical transducers was also verified.

The active element is a piezoelectric transducer 2 mm in length and 1.5 mm
0.D. Its estimated resonance frequency was in the MHz range providing u flat
response in the fraquency range of intereat, i.e. 20-25 kHz. Silver conductive paint
was used to provide electrical coupling between the steel needles and the PZT
element. This sensitive element was left unprotected in order to increase the
sensitivity of the hydrophone. At the other end, the center lead of an RG174 coaxial
cable was connected to the inside needle and the shield lead to the outside needle,
using conductive paint to provide good electrical contact. After drying, the
connection was covered with Torr Seal® epoxy resin, providing rigidity to the joint
in order to avoid breaking the electrical contact from repeated bending.

The second hydrophone used for calibration was a B&K model 8103 factory-
calibrated hydrophone. Because of its large size it could only be used in much
larger containers, as described in the next Section. The response of this
hydrophone was flat up to 20 kHz according to the specifications (see Fig. Al in
Appendix A). It was used in conjunction with a model B&K 2635 charge

amplifier,
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IL. C. Calibration of Acoustic Levitation Apparatus
1. Absolute Sound Field Pressure

Two different methods for determining the absolute acoustic pressure in the

levitation cells were usea. One method gave a direct calibration of the pill

Py transducer. However, the response of the pill was dependent on the liquid used
and a more reliable reference was therefore required, For this purpose, the needle

hydrophone NDL1 was used. The second method consisted of calibrating the

® needle hydrophone directly using a commercially available calibrated reference
(B&K 8103). Thus, the purpose of this procedure was to obtain a calibration

constant for the needle hydrophone (NDL1) which was then used for all the

® experiments by calibrating the pill transducer separately for each liquid mixture.
In all instances, the output of the side pill transducer was used to record the

acoustic pressure amplitude after being calibrated at the beginning of each

® experiment, The methods used to calibrate NDL1 will be described in this Section.

Method A: Levitation Technique, This technique was first .;uggested by Gould
(1968), and it consists of measuring the equilibrium radiuus and position above the
antinode of a bubble levitated at a given pressure amplitude. Using the fact that at
equilibrium the buoyancy and radiation pressure forcez on a levitated bubble are
equal in magnitude and opposite in direction, a linear approximation for the
pressure amplitude in terms of the bubble radius and its vertical position z

relative to the pressure node in the sound field can be derived. This expression is

given by (Crum,1970)
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where p; is the liquid density, g is the acceleration of gravity, 4, is the wavelength
of the stationary sound field along the cylindrical axis, p, is the pressure at
infinity (ambient pressure), ® is the driving angular frequency and w, is the linear
resonance frequency of the bubble which is a function of its radius. A linearized
expression for the radial response of the bubble to the applied sound field has been
used to derive this equation.

The position of the levitated bubble with respect to the stationary wave
pressure antinode was determined by measuring the acoustic pressure profile at
the cell's vertical axis, Such a profile is shown in Fig. 7 for 42% by weight
water/glycerine mixture at 22.6 kHz measured by the needle hydrophone. The
accuracy of this profile is critical in order to obtain good calibration results, and it
was one of the main reasons for building the hydrophone. The profile was
obtained by immersing the hydrophone in the liquid until the sensitive element
was close to the antinode. Once there, the micrometer of the vertical translation
stage was used to move the cell up and down until the region of interest was
mappe;d. The wavelength A,, of the stationary sound field was also obtained from
these data.

During the calibration, the levitated bubble was observed through the
Gaertner microscope. The fixed horizontal cross hair was chosen as the reference

point. When the bubble and the cross hairs were seen to coincide, the position was




-q3dep Jo UOT}OUN] B SE [[93 UOTJB}IAS] [BOLIPUIAD Jo o[goid amssarg - aamSig

(wax) yyda(q .
or 0¢ /4 01 0

1 v T T T T ¥ T v v T T T T —T T T r T

I | ! L

1 L ! !

< < e <

0 ol < <#
(8310A) esuodsad euoydoIpAH

l
1
<
©

T
1
w
el

T S B S S B

TTAD NOLLV.LIANT 30 ' I1AO0dd FENSSHdd




recorded from the micrometer reading. If the bubble changed its position, the cell
was moved until the bubble and the cross hairs were aligned again, and the new
position was recorded. The position had to be determined within a few seconds of
the rise-time measurement before the bubble had changed in size significantly.

The equilibrium radius of the levitated bubble was determined by measuring
its terminal rise velocity when the sound field was turned off. Using the
apparatus described in Section II.B.2, the procedure was as follows: the levitated
bubble was positioned at the top mark as seen through the Gaertner microscope.
When the switch was pressed, the sound field was turned off, starting the counter
and allowing the bubble to fluul upwards. The bubble could be seen through the
microscope to move downwards since the image is inverted. When it reached the
bottom mark the switch was released, turning the sound field back on and
stopping the counter, The terminal velocity of the levitated bubble could then be
calculated from the time interval and distance travelled.

The expression for the equilibrium radius can be derived as follows: when
terminal velocity is reached i.e., the acceleration is equal to zero, the buoyant force
and the viscous drag force on the bubble are equal in magnitude and opposite in

direction i.e.,

Fy =-F)p

or

%mR“p;g = J2~/GCpzu tR*, (2.2)
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where R is the bubble radius, u is the terminﬁl rise velocity, and Cp is the drag
coefficient given by
24y 12uy

CD'_"—— =

Re Rplu '

(2.3)

where Re is the Reynolds number and y is an empirical correction factor
commonly expressed in terms of the Reynolds number.

For smaller bubbles (less than 40 pm in radius), in which case y = 1, the drag
law for a rigid sphere (Stokes's law) can be used. For larger bubbles, more
accurate expressions must be used to account for the deformation of the bubble
such as the Langrauir-Blodgett or Schiller-Nauman empirical drag laws. The

expression for the radius in terms of the terminal rise velocity is given by

=QHUZX
R > g (2.4)

The correction factor x, according to Schiller and Nauman, is given by

2=1+0.15R%, (2.5)

and according to Langmuir and Blodgett by

2=1+0197TR;* + 2.6x10"R." . (2.8)




Recently, Crum et al. (1984) have found discrepancies between the theory and
experiment of the bubble response when it is driven near its harmonics, i.e.,
integer multiples of the bubble's resonance frequency. Since equation (2.1) was
derived using a linearized expression for the bubble response, Crum's
observations give this method of calibration a certain degree of unreliability., In
order to eliminate this uncertainty, a restriction on the size of the bubbles used
during the calibration was imposed, This modification was suggested by
Prosperetti (1990)., Assuming small pulsation amplitudes, it can be shown that
bubbles below about 40 pm pulsate with an amplitude which is independent of
their size. The dependence of the pressure amplitude at the antinode, p,, on the
bubble radius is implicit in the term (@/®,)? in equation (2.1). If the bubble is small,
howevor, this term is very small and can be ignored, making the expression
independent of the bubble radius. It was verified experimentally that the position
in the cell of bubbles between 20 and 40 pm was indeed independent of the radius.
Bubbles below 20 pm, however, did not behave predictably, possibly due to the
presence of foreign material which is known to accumulate at the gas-liquid
interface or to thermal currents which could easily affect the rise-time
measurements of small bubbles. Thus, several bubbles between 20 tm and 40 pm
were used to perform the calibration, This method gave a much smaller standard
deviation (over the repeated measurements), as expected, and was therefore
considered more reliable. Since bubbles are small, we can use Stokes's law (Eq.
2.3 with x = 1) to approximate the viscous drag. Using this approximation, and the

ratio (w/®,)? = 0, the expression for the pressure amplitude simplifies to
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which is a function of the position z only. The calibration was made by levitating a
number of bubbles (one at a time) at a range of pressure amplitudes and recording
their positions. The corresponding pressures were obtained using equation (2.7)
with 4, obtained from the pressure profile for GLY42. The statistical mean and
the standard deviation were calculated. Since it was not possible to introduce the
needle hydrophone (NDL1) in the cell while the bubbles were levitated, this
calibration was made with the pill transducer. NDL1 was then calibrated in the

same liquid with no bubbles present.

Method B: Substitution Method, In this method, a factory-calibrated B&K 8103
hydrophone was used to calibrate NDL1. It consisted of inserting both the B&K
and NDL1 hydrophones at the same time and side by side in a RF shielded 10
gallon fish tank filled with water. A stationary acoustic wave was set up in the
tank by a 7.6 em (3") O.D. cylindrical piezoelectric transducer attached to the glass
bottom. The transducer was glued to the tank with silicon gel, and it was driven at
around 21 kHz, the exact frequency depending on the water level. This method
will be discussed in the next paragraph,

In order to ensure that the two hydrophones were sensing the some pressure,
they were positioned near an antinode and their voltage output maximized. If the
sensitive element of NDL1 was within 2 mm of the acoustic center of the B&K

hydrophone (see Appendix Fig. A.1), then the calibration was performed. Several




antinodes were used during this calibration, and the results averaged with equal
weights.

These two calibration methods were made in order to account for any
gystematic errors inherent to any particular method. The sensitivity of the needle
hydrophone was measured by method A to be 19.9 £ 0.6 and by method B to be 19.6
0.8, volte/bar. The final calibration constant was determined statistically, giving
the result of each method an equal weight. Its value was calculated to be 19.8 £ 0.7
volts/bar corresponding to a standard deviation of about 4%, This value was used
to recalibrate the pill transducer for each experiment. As expected, the calibration
constant for the pill transducer changed for different liquid mixtures and/or liquid

levels, It was thus necessary to recalibrate it often.

IL C. 2. Phase of the Sound Field Pressure

The phase of the pill transducer relative to the acoustic prossure was
determined by direct comparison with the ncedle (NDL1) hydrophone positioned at
the pressure antinode. Because the resonance frequency of the sensitive element
of NDL1 was in the MHz range, it could be assumed that it responded in phase
with the 20.25 kHz sound field. There still remained an uncertainty of 180* in the
phase due to the unknown polarity of the PZT element. This uncertainty was
resolved in two ways: 1) By applying a static pressure to the sensitive element and
observing the polarity of the voltage output, and 2) By direct comparison with the

phase calibrated B&K hydrophone.
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The phase of the pill was measured using the two zero-crossing circuits
described in Section ILF. A schematic diagram of one of these circuits can be
seen as part of the circuit shown in Fig, 16, Each of these circuits produced
periodic narrow pulses at the zero crossing of each signal. These pulses were then
displayed on the digital oscilloscope and the phase difference measured and
recorded. The procedure was repeated several times during each experiment
since the phase of the pill transducer relative to the acoustic pressure was found to
depend strongly on the driving frequency and liquid level, It was found, however,
that as long as the system was kept at resonance, the phase of the pill remained
constant to within 2-3 degrees even if the water level changed slightly. For this
reason, the frequency control system was designed such that the frequency could

be specified with a precision of + 1 Hz.

IL D. Light Scattering Experiment
1 Apparatus

In order to record the radius of the bubble as a function of time, linearly
polarized light from a laser was scattered from the bubble. The scattered light
intensity is modulated by the bubble pulsations and, if measured at the appropriate
angle, this intensity can be converted to an absolute bubble radius. This technique
was developed by Hansen (1984) to size air bubbles under similar conditions and
has been used to record small amplitude radial and nonradial bubble oscillations
by Helt (1988) and Horsburgh (1990). A more detailed description of this technique

and of the apparatus can be found in these references.
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A schematic diagram of the apparatus is shown in Fig. 8, the shaded blocks
indicating the support equipment. The light source used was a 3-watt water-
cooled Lexel model 95 argon-ion laser operated in the TEMyg mode. An optical
rotating polarizer was placed in front of the laser which provided a 1200:1 linear
polarization ratio. The laser was used at 0.8 watt power at a wavelength of 488
nm, This power setting was determined empirically by using the maximum
power possible before the energy absorbed by the bubble was large enough to affect
its motion. The scattered light was detected by an Oriel 7182-1 photovoltaic silicone
photodiode with integral preamplifier. This photodiode had a detection area of 100
mm? and a 488 nm laser line transmission filter in order to reduce background
noise, The output of this diode was connected to both a DC voltmeter which
provided information on the temporal average radius of the bubble and a Stanford
Research Systems model SR560 low-noise preamplifier in order to further increase
the signal-to-noise ratio. The amplifier was set to a gain of 40 dB and was
connected to an AC-coupled LeCroy 9400 digital oscilloscope which recorded the
scattered light intensity of the pulsating bubble as a function time. A National
Instruments GPIB interface was used to transfer the data from the oscilloscope to

a Macintosh II computer for analysis and graphical output.

II. D. 2. Calibration
a. Absolute Bubble Radius

The technique used to calibrate the output of the photodetectors was first

developed by Hanasen (1984) and later refined by Holt (1988) and Horsburgh (1990)




49

“9TT) J6 TOLPIUNY © Se L)ISudjul 341} paiajeds

9Y} pi09231 0) pasn sn;eiedde [ejuowLedxs jJo weidep onewoydg g 2Indig

WAISAS TOHINOD NOIUISIN®OY
/ NOILISIN®OV vIvd VIva
I T1daV / T JVVSI ALV TOA I HSOINIOVIH
S V0058 °XnLd |
ooA] WV _{4d00SOTTIOSO
TOIVTIOS0 Sﬂ,%wm“_w ; TYLIDId
VZIEE [opow HO 00%6 40157
pIEYRF-1R[MO Z#HD
0D HALTIV/INVALD
aAldriany_ | PNFHOLVIR 0959dS [°powr
00¢L [Ppom [oressay pIoJuels
SETN AAINASNVEL
T1gdand TIId 5AIS
FASV'T NOIFNODIV hY
G6 [9poul 3Yo] vy
HoLOd1dd
F “OLOHd -
i N TosiLeuo | dILIWIOA DA
H . V99¥g [epow
eNIed- 1M
a0 A £
NOLILVLIAT1
@ ® ® ® 9 ®




for experiments similar to those described in this work., Using Mie scattering
theory, Hansen (1984) showed that at certain scattering angles a monotonic
relation exists between the light intensity and the bubble radius. Thus, before the
calibration procedure is described, let us first introduce this relation.

The theory describing the scattering of electromagnetic radiation from
dielectric spheres was developed by Gustav Mie in 1908. A complete treatment of it
can be found in Kerker's (1969) excellent book on the subject, and his notation will
be used here. The following are the results applicable to the component of the
scattered intensity in the far field and parallel to the scattering plane (defined by

the incident and scattered directions) for an incident wave of unit intensity:

. 2
I= “cos?p,
Lajdcos®s (2.8)

where r is the distance from the center of the bubble, ¢ is the azimuthal angle, and
A is the wave length of the light in the liquid. The scattering amplitude S is given
by

_v 2n+l .
S= z n—(ﬁ—il—)[anrn(cos 6) + bnﬂn(cose)] ) (2.9)

n=1

where @1is the scattering angle, and forward scattering corresponds to 9= 0. The

angular functions are given by

P cos6)

sin@

Tu(cosO) = (2.10)




bl

dPg(cos6)
do

Tn(cosf) = (2.11)

where the P,V (cos) are the associated Legendre functions. The coefficients a,

and b, are found from

a, = V/n(a)'{/n(ﬁ) « MYn(BY ()

' 2.
(VY u(B) - myu(B)S”(0) (212)

by = mll’n(a)‘l/n(ﬁ) - Wn(ﬁ) l/n(“)

MDY (B - Yu(BE"n(t) (2.13)

where m= k;/k; = m;/my is the relative index ot refraction. Subscript I refers to the
bubble interior, while subscript 2 refers to the surrounding liquid, % is the wave
number, m is the index of refraction, & =22 m,R /4, is the size parameter, A, is the

wavelength of the incident light in vacuum, B = am, and primes denote

differentiation with respect to argum¢ -  The functions
Yula) = ajplar), (2.14)
&) = ah o), (2.15)

are the Ricatti-Bessel functions with j,(o) and A, (a) the ordinary spherical
Bessel functions of the first and third kind respectively. For convenience, we

define the relative intensity as

b =422 = |G costy (216
A




For the purpose of illustration, parameters relevant to an air tubble in water
will be chosen, with the incident wavelength being 488 nm. Fig. 9 is a plot of log)
I, us 6 for 0 to 180 degrees for a size parameter aequal to 661, corresponding to a
bubble of radius 38 um. Looking at this graph, we want to determine what the
optimal angle is which would make the intensity a monotonic function of the
radius. If possible, 8 should be less than 90" since the intensity drops considerably
for angles greater than 75°. Fig, 10 is a plot of Ire; as a function of radius for 6 =
66'. As can be seen, the coarse structure due to the interference of the reflected
and refracted rays make this angle an undesirable one. Fig. 11 shows the same
calculation for an angle 6= 70", Although the coarse structure is less pronounced,
Ipe! is still not a single valued function of the radius. The theoretical relative
intensity for a scattering angle @ = 80 from the forward direction is shown in Fig.
12 demonstrating the ideal type of radial dependency. The fine structure
disappears when the intensity is calculated using a finite solid angle as would be
the case during the experiment. Because this angle gives the greatest intensity
with a smoothly increasing function of the bubble radius, it was used for all the
experiments. This is the same result obtained by Holt (1988) and Horsburgh (1990)
who had previously demonstrated the validity of Mie theory for this type of
experiment. The calculations shown in Figs. 9-12 were made by Holt using a
modified version of a program developed by Wiscombe (1980).

In order to determine the instantaneous bubble radius from the scattered light
intensily, an intensity-radius transfer curve was obtained. For this purpose,

bubbles of different sizes were levitated and the scattered light intensity recorded.
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The size of the bubbles was determined by the rise-time method described
previously using the appropriate drag law. The experimental Mie scattering
intensity for bubbles between 20 and 80 microns for 42% glycerine mixture is
shown in Fig. 13. The solid line is a 314 degree polynomial fit to the data, Curves
for Water, 21%, 356% and 60% glycerine can be found in Appendix A, Figs. A2-Ab5.
These curves were used to convert scattered intensity to bubble radius,

It should be noted that the Mie scattering calibration data were taken without
the preamplifier in order to avoid internal DC offsets from introducing calibration
errors. During the experiment, the intensity-time data were taken with the pre-
amplifier set to a fixed gain and AC-coupled to the oscilloscope. In order to obtain
radius from intensity, the gain of the preamplifier had to be considered first. The
correct DC offset was then added such that the average of the intensity minima of
each trace was equal to the background intensity., This background level was
obtained from the intensity-radius calibration curves for each mixture. Generally,
the background intensity corresponded to a bubble radius between 10 and 20 um
depending on the mixture. Since bubbles are certain to collapse to values of the
radius less than 10 um, it can then be assumed that the minimum light intensity
detected by the apparatus is that of the background. The determination of the
background level from these cui ves constituted the largest source of error. The
other source of error wns the finite width of the laser beam. Since the bubble was
not perfectly stationary, it was possible that it could have moved outside the beam

while the data were being taken. An error analysis procedure estimated the total

uncerluinly o be £ 5 um,
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I1. D. 2. b. Phase of Radial Bubble Pulsations

The phase of the bubble pulsations was measured relative to the calibrated
side pill transducer. For the light scattering experiment, a more direct method
than the one described in Section I1.C.2 was devised to calibrate the pill. This
calibration was made relative to the oscillations of a levitated bubble driven at a low
pressure amplitude and far from its resonance frequency. As illustrated in Fig,
14, the theoretical phase of the radial minimum in the region 0.6R, < R < 0.75R, is
not only flat but fairly independent of the pressure amplitude. Since this region
corresponds to bubbles away from their harmonic resonances, this phase
corresponds to the only radial minimum occurring each cycle of the driving
pressure. This phase was also found to be independent of the formulation used to
calculate it, Thus, by knowing the phase of the bubble pulsations relative to the
sound field, the phase of the pill transducer could also be determined. Bubbles in
this size range were levitated and the simultaneous oscilloscope traces of both the
pill transducer output and scattered light intensity were stored in the computer.
The two traces were displayed on the Macll CRT screen using Passage II plotting
software. The time difference between minima was measured from which the
phase difference was calculated. The estimated total error of the calibration

procedure was + 5 degrees. This error was mostly due the uncertainty of the bubble

sizes used in the calibration procedure.
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II. D. 3. Procedure

The light scattering apparatus described in the previous Section was used to
obtain the radius vs time curves for radial pulsations of bubbles. Five different
glycerine/water mixtures were used in this experiment in order to obtain data for
liquids with several different values of the liquid density, viscosity, surface tension
and speed of sound. These mixtures were pure water, GLY21, GLY35, GLY42 and
(GLY60, where the two digits represent the percent by weight of glycerine. The
solutions were prepared from 99.6% pure glycerine and water filtered down to 0.2
um in particle size., In order to lower the gas content, the mixtures were
periodically vacuum-filtered through a 5 pm Teflon filter. This procedure also
served to remove impurities after the liquid had been used for some time.

The procedure was relatively straightforward, once the bubble was stabilized
in the radial mode. After positioning the bubble in the center of the beam,
simultaneous traces of the pill transducer output and scattered light intensity
were stored in the oscilloscope and transferred to the computer for permanent
storage. The process was repeated for each mixture as the pressure amplitude,
P4 was increased using the same bubble whenever possible. At the higher
prossures, the bubble often exhibited vertical oscillations, with a frequency around
1 Hz or higher. If the amplitude of these oscillations was large enough so that
part of the time the bubble was off the center of the beam, several traces were
recorded but only the ones with the largest scattered intensities were transferred
to the computer. It was assumed that the largest values were obtained while the

bubble was in the center of the beam. Each trace corresponded to about 0.2 msec of




real time. In addition, if the signal-to-noise ratio was too small, as was the case
for the lowest values of the pressure amplitude, time averages over 100 traces were
performed by the LeCroy oscilloscope before transferring the data to the computer.
Because the scattered intensity was periodic over several minutes, no information
was lost in the time-averaging procedure,

All the light intensity traces were converted to radius using the transfer
curves for each liquid mixture., The pulsation amplitude (R ,,.), the phase of
collapse (¢.)and the number of radial minima (M) of the oscillations were obtained
from these traces, These quantities will be defined more precisely in Chapter III,
The value of the equilibrium radius of the bubble (R,) was obtained by the rise-time
method, although thermal and acoustic pressure currents in the liquid made this
measurement difficult and imprecise. From these measurements, however, it
was determined that the bubble sizes were less than 20 pum for all of the liquid
mixtures. Mie scattering techniques also were imprecise because of the very low
gignal-to-noise ratio at these bubble sizes.

The gas concontration during these measurements was somewhat below
saturation. Since no dependence of the bubble pulsations on the gas concentration
was expeacted, no attempt was made to control this parameter extensively. During
the single bubble experiments, however, a certain amount of under-saturation
was required in order to suppress cavitation which generated copious streaming
and disturbed the stably pulsating bubble. The higher concentration glycerine
solutions required less under-saturation, since air does not readily dissolve in

glycerine and it is thus naturally "degassed”.




1I. E. Sonoluminescence Detection Experiment
L Apparatus

When the pressure amplitude in the levitation cell was high enough to
produce sonoluminescence from cavitation, it was desired to measure the onset as
well as the phase of the light emission relative to the sound field. This Section
describes the apparatus used to acquire these data.

Because of the low intensity of the light emissions, an eight cubic foot light-
tight box was built which allowed the use of a photomultiplier tube (PMT) to detect
them, Bulkhead BNC connectors on both side walls were used in order to bring all
the necessary electrical signals in and out of the box. During the experiment, the
front cover was tightly secured with 4 sets of removable 1/4 inch nut and bolt
combinations. A rubber gasket around the edge was used to provide a tight fit
between the cover and the box. A model R585/C617 PMT/preamplifier combination
made by Hamamatsu for single photon counting applications was used to detect
the light emissions. The dark current and gain specifications of this system were
1 count/sec and 105 rospectively while the rise and fall times were 15 nanoseconds
each. This system provided a high signal-to-noise ratio as well as a time
resolution on the order of 1/500th of an acoustic period ( < 1*) necessary to measure
the phase of sonoluminescence accurately. Fig. 15 shows the schematic diagram
of this apparatus, the shaded blocks indicating the support equipment.

The phase of SL flashes was measured relative to a reference signal. This
signal consisted of a series of fast electronic pulses generated with a fixed phase

relative to, and the same frequency as, the sound field. By measuring the time
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interval between these pulses and SL events, the phase of SL was determined. A
schematic diagram of the circuit used to measure this phase is shown in Fig. 16.
One of the functions of this circuit was to generate NIM* -type pulses (-0.5 V peak
amplitude and 100 nanoseconds long) at the negative-slope zero-crossing of the
periodic, sinusoidally varying signsl generated by the side pill transducer. The
phase of this signal was usually different from that of the sound field and
therefore required calibration (see Section I1.C.2). The pulses were generated by
the zero-crossing detector circuit shown in the upper left region of Fig. 16. The
output of this circuit (Q on the 4047 chip) was connected to the STOP input of the
time-to-amplitude converter (TAC) module. The pulses generated by the PMT
when a sonoluminescence event occurred were connected to the input of an Ortec
constant fraction discriminator in order to convert them to NIM-type pulses. A
variable time delay was then inserted to these pulses with a delay generator unit
before being ronnected to the START input of the TAC module. The purpose of the
time delay was to maximize the amplitude of the TAC output pulses and,
therefore, the precision of the data acquisition system. The amplitude of the
output pulses generated by the TAC were propoctional to the time interval between
START and STOP pulses. This apparatus was designed to facilitate the
measurement of the phase of thousands of sonoluminescence events. To
minimize the amount of dead time in the TAC circuit, the reference signal was
used as the stop pulse. The reference pulses occurred every acoustic cycle at a

fixed phase, while sonoluminescence events usually happened sporadically. If a

* NiM=nuclear instrumentation module,
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stop pulse occurred without a previous valid start pulse, the stop pulse was
ignored by the TAC. Thus, only stop (reference) pulses which occurred after a
start pulse (sonoluminescence event) within the given time interval generated an
output pulse. All other situations were effectively ignored and generated no
output.

The amplitude of the output pulses was measured by a multipurpose 1/O
board made by National Instruments (MIO16) with a maximum sampling rate of
100 kHz. The host computer was a MAC II using the Labview® software. The
precision of the data acquisition system was 12 bits which corresponded to a
precision of A¢,=10.1 degrees of the phase if measured under noiseless conditions.
Typical noise levels were + 1 degree. This system was able to sample the phase for
thousands of consecutive cycles. Since the data were acquired with a DMA (direct
memory access) board, the maximum number of data points that could be taken
consecutively was determined by the amount of memory in the Macll computer.
Typically, each set of data consisted of 1000 acoustic cycles, equivalent to about 50
msec. However, data sets as long 20,000 acoustic cycles were possible if needed,
corresponding to about 1 sec of real time.

In order to obtain information on the frequency of sonoluminescence events,
data conversions on the analog-to-digital convertor (ADC) board were triggered
every cycle. Thus, if in a given acoustic cycle no sonoluminescence events
occurred, or if they occurred outside the maximum time window set in the TAC
module, an analog voltage value of zero was read by the computer. Otherwise, the

amplitude of the pulse carrying the phase information was read. The data were

displayed on a CRT screen before being stored permanently.




II. E. 2. Calibration

The calibration of this apparatus was done as follows. First, the front panel
reading of the delay generator module was calibrated using a digital oscilloscope
to measure the true time delay. The resulting second degree polynomial fit was
then incorporated into the conversion routine written in Labview®, Next, two
pulses separated in time by a variable interval were input into the TAC module
using the calibrated delay generator. Similarly, a second degree polynomial fit
was obtained relating the pulse amplitude and the time interval and incorporated
into the conversion routine, Affer this, the only other calibration factor needed
was the phase shift of the side pill transducer relative to the sound field. This

factor was obtained as explained in Section C.2 of this Chapter.

II. E. 3. Procedure
a. Phase of Sonoluminescence vs Bubble Motion

Using the light scattering apparatus and the photomultiplier (PMT) SL
detection system, the phase of SL. was measured relative to the instantaneous
radius of the bubble. This is the most direct way of determining the point during
the bubble motion in which the SL flash is emitted. Since both the photomultiplier
tube (PMT) and the laser could not be on simultaneously, an intermediate phase

reference had to be used. The procedure was as follows: After positioning a

pulsating bubble in the center of the laser beam, an instantaneous intensity-time
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10
the computer. The laser and the room lights were then turned off and the PMT
turned on with a black cloth wrapped around it and the levitation cell. Similarly,
Lo simultaneous traces of the PMT output and the pill transducer output were stored
in the computer, All traces were obtained very quickly to ensure that all
parameters remained constant. The intensity-time and SL traces could then be
¢ compared directly after verifying that the two pill output traces were in phase.
IL E. 8. b. Phase of Sonoluminescence vs Sound Field
|® The phase of SL was measured for different values of the liquid density,
viscosity, surface tension and speed of sound, The time-to-amplitude converter
(TAC) system provided a very efficient method of recording the phase of SL for
¢ thousands of cycles at a time or even in real time if desired. The general
procedure was as follows: After filling the cell with the desired glycerine mixture,
an amplitude and phase calibration of the pill transducer was made using the
o procedure described in Section II.C. A bubble was then introduced into the liquid
and made to sonoluminesce at the desired pressure amplitude. After the light-
tight box was closed, the phase of SL was measured for different pressure
¢ amplitudes using the TAC system and stored in the computer for later analysis.
The system was checked periodically and kept at resonance in order to maintain
the calibration.
¢ Measurements were also made of the phase of SL during streamer activity
when the cavitation field was composed of many bhubbles sonoluminescing
o
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simultaneously. The purpose of this experiment was to study the behavior of

bubbles during intense cavitation activity.




Chapter III
Theory of Bubble Dynamics

Ol A, Introduction

In this Chapter, the mathematical formulations used to describe the motion of
a single bubble in a spatially uniform acoustic field are presented. This field is
assumed to vary sinusoidally in time. During the calculations, three different
formulations will be used, the results of which will be compared to the
measurements. These formulations are the Keller-Miksis (1.980) radial equation
with a linear polytropic exponent approximation, the Keller-Miksis radial
equation with Prosperetti's (1986) exact formulation for the internal pressure, and
Flynn's (1975) formulation, which also includes thermal effects inside the bubble.
These formulations will be referred to as polytropic, Prosperetti's, and Flynn's
formulations respectively. Because of the large pressure amplitudes, p,, used in
the calculations, only formulations that included correction terms for the
compressibility of the liquid were considered. In addition, Section B.2 introduces
some basic concepts of bubble dynamics which will be needed to understand the
results of the experiments. In Section B.3 the assumptions made in the derivation
and the limits of the formulations will be discussed. In particular, the extent to
which these limits are exceeded in the present calculations will be considered.

Two other effects are important when treating acoustically driven bubbles:

surface waves and rectified diffusion. Surface instabilities, also known as surface




waves or shape oscillations, can occur when the acceleration of the interface
exceeds a certain value. This type of instability usually results in the breakup of
the bubbles at these amplitudes. Similarly, rectified diffusion, a mechanism by
which bubbles can to grow in an acoustic field, exhibits a threshold behavior. The
pressure amplitudes above which surface waves are excited is called the surface
wave threshold, and that above which growth by rectified diffusion is positive is
called the rectified diffusion threshold. Brief presentations of the mathematical
theories used to describe these two phenomena are presented in Sections C and D,

respectively.

IIL. B. Radial Bubble Motion
L Theoretical Formulations

The first attempt to describe mathematically the collapse of an empty
spherical cavity in a previously undisturbed liquid was made by Rayleigh in 1917,
His work was motivated by the increasing concern over the rapid deterioration of
ship propellers. This deterioration was caused by what is now known as
hydrodynamic cavitation. Rayleigh's equation can be obtained by equating the
power at infinity and the time rate of change of the kinetic energy in an

incompressible liquid (Commander, 1985) and it can be expressed as

9 Yy Des
dptz .=
RR+2R n (3.1)
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where p is the pressure at infinity (in this case, the ambient pressure), p; is the
liquid density, R the radius of the cavity and dots indicate time derivatives. In his
seminal paper, Rayleigh found an explicit expression for the bubble wall velocity U

as a function of R:

3
U?= gp..(g% 1), 8.2)

where R, is the initial radius. As simple as these equations are, they constitute
the basis for all subsequent work on bubble dynamics,

It was not until 30 years later that any significant improvements were made to
Rayleigh's equation. The first of these was made by Plesset (1949) in which he
added the variable pressure term (appropriate for acoustic cavitation) and surface
tension term. This equation, together with a viscous damping term added by

Poritsky (1952) is known today as the Rayleigh-Plesset equation, and is given by

5,882 Ll ). . 20 4R
RR+2R o Du(t) - palt) R L (3.3)

where p, is the gas pressure in the interior of the bubble, p, is the driving pressure
(including ambient pressure), and uis the shear viscosity of the liquid. This is
probably the best known equation describing the spherical motion of a gas bubble
in a liquid. Despite the fact that it assumes an incompressible liquid, it is still

used extensively. However, because the velocity of the interface can easily reach

values comparable to the speed of sound in the liquid, it is necessary to include at
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least first order compressibility terms in this equation, in order to account
properly for the energy stored in the liquid. Following the procedure used by
Keller & Miksis (1980), Prosperetti (1984) has obtained the following equation:

(1-&]rt + 221 - ) <1+ I})é[pu(R,t) -pat + By 4 LEPVRED IpiRE | g

where ¢ is the speed of sound in the liquid, py(R,t) is the pressure on the liquid side
of the bubble interface, and ps(¢ + R/c) is the time-delayed driving pressure. py(R,t)
can be expressed in terms of the internal pressure by the condition on the normal

stress across the boundary
pu(R,t) = py(R,t) - Zléz - 4/.113?- . (8.5)

The relationship between the internal pressure and the bubble radius is
determined mainly by the thermodynamic properties of the gas. Although this
relation can be assumed to be isothermal or adiabatic under some circumstances,
a polytropic relation has often been used (Noltingk and Neppiras, 1950; Flynn,
1964; Prosperetti, 1974; Lauterborn, 1976; Keller and Miksis, 1980) of the form

A 3.6)
P = Do R

where x is the polytropic exponent, and p, is the internal pressure of the bubble at

equilibrium, defined by




5

Do = Du + %ff . 3.7

The value of x varies between 1 and ¥, for isothermal and adiabatic motion

respectively, y being the ratio of the specific heat capacities C,/C,, where the

subscripts p and v indicate that the pressure and volume are kept constant. This

exponent is calculated according to Prosperetti (1984), In this study, the Keller-

Miksis radial equation (8.4) with a polytropic approximation is used as an example
of a first order compressible radial equation using a constant speed of sound.

The procedure used to obtain equation (3.4) requires the elimination of higher
order terms. It is thus expected that several similar equations exist as derived by
different authors. Another commonly used formulation is that of Gilmore (1952).
Although no calculations will be made with this model, it is considered by many
scientists to be a principal formulation of bubble dynamics. It is therefore
included here for a sense of completeness.

In his formulation, Gilmore considers the enthalpy A of the liquid a
fundamental quantity. In addition, the quantity r(h + u2/2) is postulated to
propagate with a velocity ¢ + u where u is the particle velocity, as first suggested by
Kirkwood and Bethe (1942) (see Rozenberg, 1971 for a detailed derivation). The

resulting equation is known as Gilmore's equation and is given by

1 -é’u)m'é + 3R "(1 - ?385) =1 +§~)H + {iddliih . lci) , (3.8)

where H is the free enthalpy at the bubble wall, which for water is usually given by
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L
H = ;qu(_mplll[(pu(zz,z) + B (o) + B, (3.9)

where the constant B has been measured to be 3000 bars, n = 7 and the time

dependent speed of sound is given by

c= (c: +(n-1 )H'}% , (3.10)

where ¢« is the speed of sound at infinity, Assuming adiabatic motion, the

pressure at the boundary pg(R) , as in the previous formulation, is equal to

po(R) = [p. +22) (%)37- 2. 5—?— . 311)

Despite the very different approaches, Gilmors's equation nearly equals equation
(3.4) if the substitution
(p” b poo)

H= , 3.12
PN 3.12)

is made and the speed of sound is kept constant.

Although the polytropic approximation has been generally thought to be a
fairly accurate model, an experimental study by Crum and Prosperetti (1984) has
shown large discrepancies between theory and experiment tor oscillations near
the harmonics of the resonance frequency of the bubble. Since compressibility and
viscous effects are expected to be small at these amplitudes, these results suggest

that thermodynamics play a more important role in the motion of the bubble than




originally expected. For this reason, a more accurate expression for the internal
pressure has been obtained by Prosperetti et al, (1986). In their formulation,
several approximations have been made. Some of them are: a uniform pressure
field inside the bubble, the temperature in the surrounding liquid remains
unchanged and an ideal gas is assumed. Of course, these approximations place
severe limitations on the model, especially when the pulsations are large and the
wall velocities reach values comparable to the speed of sound. Despite its
limitations, theoretical values of the internal temperature and pressure with a
degree of accuracy comparable only to Flynn's (1976) will be obtained with this
formulation. The following is a brief outline of Prosperetti's model starting with
the conservation equations for the interior of the bubble.
The momentum equation with spherical symmetry can be written as

du .19

dt Doy ) (3.13)

Assuming spatially uniform pressure, the momentum equation reduces to
p =plt). (3.14)

The conservation of muss equation can be exprossed as

where
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is called the convective derivative , and Z=uF is the velocity vector in the radial
direction 7. The conservation of energy equation, ignoring the viscous heating

term, can be written as
T(9pt\ dp
ap _v. (g vr (3.16)
PCP dt p( ) ( )

where T' is the temperature, C,, is the specific heat at constant pressure, and K is
the thermal conductivity of the gas. In order to obtain the velocity field in terms of
the temperature, we multiply the conservation of mass equation (3.15) by C,T' and

add it to energy equation (3.16) to obtain
Cryy (p:T)+13( Pl 4 5 +Co ATV 3=V {KVT). 817

From the ideal gas laws with constant specific heats, we can express

_rp o _ (3.18)
Gl =1 (p:)( ) L

Inserting equation (3.18), (3.17) becomes

p +V ( (YI)KVT} 0. (3.19)
TP Yp

Due to the spherical symmetry assumption, this equation can be integrated

directly to obtain
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-1 o 1., (3.20)
u 7 (yl)Kar 3rp.

Using the boundary condition

ulr=R,t)=R, (3.21)

equation (3.20) can be used to obtain a differential equation for p by evaluating it at

r=R:
= R -aT . ‘) (3.22)
p Rﬁ((y l)K—ar IR YR,

which can be solved simultaneously with the radial equation (3.4) once the
gradient of the temperature field at the boundary is found. For this we use the

energy equation (3.16) which can be now written as

a_T+u¥-p=§-KVT. (3.23)

The only difficulty in solving this partial differential equation is the
temperature dependence of the thermal conductivity K. One way to solve this

difficulty is by the transformation

T
‘E‘:f K(@) de, (3.24)
1.




where T.is the ambient temperature. In addition, it is convenient to have a fixed

rather than a moving boundary condition. Therefore, a new variable is introduced

=L

Using (3.20), (3.24) and (3.25), the energy equation (3.23) becomes

ar 1 1) ( ot _ 07 | ) D 12_ Ve
— - ) 3.26
dt ‘pr oy ay y=1 P = (3.26)

where the Laplacian operator V? is now with respect to the variable y, and

__Kn _riKDT (3.27)
B T T

is the appropriate form of the thermal diffusivity for an ideal gas. The boundary
condition for the vector 7is
tiy=1,4)=0. (3.28)

This condition postulates the continuity of the temperature field across the bubble

wall.

The third formulation used to compare to the experimental results is Flynn's
(1976) in which the thermodynamics of the bubble interior are included. Just as in
Prosperetti's formulation, Flynn assumes that the pressure inside the bubble is

uniform. A major improvement relative to Prosperetti's formulation, however, is
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that the energy equation in the liquid surrounding the bubble is included.
Preliminary tests indicated that, for the pressure amplitudes considered here, the
temperature in a thin shell of liquid around the bubble is increased significantly
during the radial minima. In this respect, this model should provide additional
information on the thermodynamics of bubble motion.

Unfortunately, the derivation of Flynn's formulation is rather involved. For
this reason, only the radial equation is written here, using Prosperetti's

nomenclature, as follows:
R\ pis 59y R : R idpa(R,t)
(1-&) Rz + 38 (1-55)-(1\«@)%[“(3,0 ) +§5(1-4§~)d——dt—. (3.29)

The major difference between this equation and the Keller-Miksis equation is
the factor (1-R/c) multiplying the time derivative of the pressure just outside the
bubble, dpy/dt. Comparing the results of Flynn's and Prosperetti's formulations, it
appears that this extra compressibility term makes a significant contribution
when the bubble wall velocities, U, are high, reducing the strength of the collapse
(Church, 1990b). A more detailed comparison will be given in Chapter IV. For the
details of Flynn's formulation, the interested reader is referred to the cited
literature.

These three formulations are solved numerically. The first two, polytropic
and Prosperetti's, are solved using an IMSL (IMSL, 1987) integration routine.

This routine employs Gear's (1971) "backward differentiation” technique. A

spectral solution scheme developed by Kamath and Prosperotli (1989) is used to




solve for the vector 1 in equation (3.26). Flynn's (1975) set of equations are solved
using an improved Euler method routine written by Church (1990¢). Five DEC

MicroVaxes in a cluster configuration are used to perform the computations.

IILB. 2. Basic Concepts of Radial Bubble Motion

The purpose of this Section is to present some general characteristics of the
motion of a single gas bubble driven sinusoidally. Unless otherwise stated, the
examples plotted in this Section were calculated with the polytropic formulation,
which required the least amount of computational time. The other formulations
give qualitatively similar results.

In Fig. 17, several examples of bubble response curves, as predicted by
Prosperetti's formulation for water at fi=21 kHz, have been plotted. Here, the
maximum radius (R,,,.) during one period of the driving (acoustic) frequency after
the solution has reached steady state is plotted as a function of the equilibrium
radius (R,) for several values of the pressure amplitude, p,, as indicated by the
numbers labeling each curve. Since the steady state solution has a period equal to
that of the driving frequency, R, is single valued. The resonance radius of an air
bubble in water driven at 21 kHz, for example, is 150 microns. Linear behavior
usually requires that the pulsation amplitude be less than 10% of the equilibrium
radius, For p,=0.1 bars, the maximum response occurs when the normalized
radius (R,/R,,) is nearly equal to 1, where the resonance radius is defined as the
radius of a bubble whose linear resonance frequency is equal to the driving

frequency. Other peaks can be seen at or near R /R,.=1/2, 1/3, 1/4 ... etc, cach
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lower in amplitude than the previous one. They are known as the harmonics of
the resonance response. These peaks, shown in Fig. 17, have been labeled with an
expression n/m, called the order of the resonance according 4. ihe notation
introduced by Lauterborn (1976). In this notation, n and m can be defined us
follows: If T'y is the period of the bubble motion, T, the period of free bubble
oscillations and T the period of the driving frequency, then for a given steady state
solution we can express TpamT and Tp=nT; . The case when m=1 and n=2, 3,...
has already been mentioned and are the well known harmonics, whereas the
resonances when n=1 and m=2, 3,... are called subharmonics. In this study, we
will encounter both harmonic and subharmonic bubble motion. The resonances
when n=2, 3,.. and m=2, 3,... are called ultraharmonics. However, since they
were never observed in the range of parameters used here, they will not be
discussed any further. Thus, the motion of bubbles near the n=1 peaks can be
characterized by the number of minima occurring in one acoustic period, T, after
the solution has reached steady state. For example, bubbles of radii R,/R,,, near
the 1/1 peak exhibit 1 radial minimum and bubbles near the 2/1 peak exhibit 2
radial minima, and 8o on. Examples of radial pulsations of bubbles near the 1/1
and 2/1 peaks are shown in Figs. 18 and 19, respectively. Since T;is proportional to
the bubble radius, R,, it is now clear that the number of minima occurring in one
acoustic period gives some indication of the size of the bubble, with the smaller
bubbles having the larger number of minima.

An often observed characteristic of resonance curves of nonlinear oscillations
is the shifting of the resonance peaks as the driving amplitude is increased. This

effect can also be observed in Fig. 17 for bubble pulsations and is due to the
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nonlinear "softening" of the restoring force as the bubhle expands. In this case,
the shifting causes the left edge of the peaks to steepen and eventually "bend over".
At this point, the two solutions exist simultaneously for the same value of the
bubble radius, R,/R,., causing abrupt transitions to occur from one solution to the
other for small changes in R,/R,, Transitions of this type are known as "saddle-
node bifurcations" among researchers in the field of nonlinear dynamics.

At pressure amplitudes above 1 bar, the pulsations of small bubbles (< 40 pm)
develop a characteristic shape, An example of a radius-time curve at large
pressure amplitudes is shown in Fig. 20. This particular example is for a 20 um
bubble in water at p4=1.2 bar. In general, the motion consists of a relatively slow
growth during the first half of the acoustic cycle when the pressure is negativs,
followed by a rapid collapse and several rebounds. The word "collapse" here refery
to the first bubble contruction after R,,, has been reached, and which is usually
very fast and violent. This timing is usually referred to as the phase of the
collapse, ¢, and is measured in degrees from the beginning of the negative
pressure cycle, where ¢=0°. The beginning of the compression cycle corresponds to
$,=180". The collapse in Fig. 20, for example, occurs near 220 °,

Not surprisingly, the highest temperatures and prossures are generated in
the interior of the bubble during this collapse. Fig. 21 is a plot of the temperature
inside the bubble for the same conditions as Fig. 20, The large temperature spikes
are generated during the violent, nearly adiabatic, collapses. It is during these
collapses that sonoluminescence is believed to be generated. Similarly, high

pressures are generated in the bubble interior as the gas is rapidly compressed, as
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shown in Fig. 22. Th¢ data shown in Figs. 21 and 22 are mostly for illustrative
pvrposes, and the values of the maximum temperatures and pressures, T),,, and
P ax respectively, are only estimated.

In general, then, three quantities can be used to describe the radial pulsations
of bubbles at high pressure amplitudes: the maximum response or pulsation
amplitude (R,,,), the phase of the collapse (¢.) and the number of minima (M)
which includes the first minima (i.e., the collapse). Note that, just as for low
pressure amplitudes, the number of minima increases as the equilibrinm radius
decreases.

Up to this point, all quantities have been given a single value for each solution
assuming that, after reaching steady state, the solutions have the same period as
the driving pressure. This is not always the case, however, especially at high
pressure amplitudes where nonlinear effects are more promninent. In this regime
and uader certain conditions, the mntion of the bubble is such that it repeats itself
only after a multiple number of acoustic periods. This is usually referred to as
subharmonic motion (n=2,3,...). For example, subharmonic motion of period iwo
(n=2), also known as period-two motion, occurs when the period of the radial
pulsations is twice the period of one acoustic cycle (T'x=2T). In this case, the values
of Rip,,, ¢ and M where the superseript i=1,2, i.e., they alternate between two
different values from one acoustic period to the next. Although period 3, 4, ...etc.
are possible, only period-two solutions were found numerically for the conditions
used in the experiments. Examples of period-two motion can be found in the

response curve shown in Fig. 23 calculated for a bubble driven at 1.2 bars in water

according to Prosperetti's formulation. This type of motion is indicated by
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the double value of the maximum radius for each value of R,/R,,,, and is usually
referred to as a period-doubling or pitchfork bifurcation. It should be noted that
the values of Rma plotted in Fig. 23 and all subsequent similar plots did not occur
during the same phase of the driver, as is usually done in the "Poincaré sections"
often used in the nonlinear dynamics literature, Instead, values of R .. are
calculated over each acoustic period. For the rest of this dissertation, the
superscript i will be dropped from the quantities R .., ¢, and M, unless confusion
is likely to arise. For the parameters of interest in this study, Rp.. was usually
found to occur near the same phase, e.g., 200 degrees. The peaks observed in Fig.
23 are due to nonlinear resonances of the radial motion encountered as the
equilibrium bubble radius changes, The height of these peaks is usually
dependent on the amount of damping included in the model.

Similarly, a period-two bifurcation can be seen in the phase of collapse curves
at Ro/Rees~0.14 (20.3 pm) in Fig, 24, The data in this figure were calculated using
the same conditions as in Fig. 23. Not only does the bifurcation occur in the same
location, but every change in the curve does as well; i.e., an increase (decrease) in
R ...« results in an increase (decrease) in ¢, This correlation is not surprising
since a larger response requires the bubble to spend additional time during the
growth and collapse phase. Since a larger pulsation amplitude results in a
stronger collapse (other parameters remaining constant), then a greater phase of
collapse corresponds to a more violent collapse. Thus, after the period-doubling
bifurcation occurs, the uppermost branch corresponds to the larger pulsation

amplitude and the stronger collapse. A "stronger" collapse means a smaller

collapse ratio (R,./R, which gencrates higher gas densities, as well as higher
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temperatures and pressures. This is illustrated in Figs. 25 and 26 where the
maximum internal temperature (7',,,) and pressure (P,,,) generated during each
period has been plotted, respectively, for the same conditions used in Fig. 23, Tpq,
has been averaged over the bubble interior, Again, note that these two quantities
are directly correlated to the pulsation amplitude. Also note the high sensitivity of
the temperature and pressure to the pulsation amplitude, i.e., a small change in
R, results in a fairly large change in Ty, and P, . The close relationship
among the quantities R,y y 0¢/Tmaxy and Poq, will be useful in Chapter IV where

the experimental results will be discussed.

III. B. 3 Limitations of the Theoretical Formulations.

The range of acoustical parameters being considered in this study has been
determined by the measurements made during the experiments. These
parameters are the following: driving frequencies between 21 and 25 kHz,
pressure amplitudes between 1 and 1.5 bars, and bubble radii between 15 and 25
microns for five different water/glycerine mixtures. For these parameters, the
temperatures and pressures generated inside the collapsing bubbles have been
measured and calculated in this and other studies (see Chapter I) to be on the
order of thousands of degrees Kelvin and thousands of bars. To date, no model of
cavitation exists which can treat the gas - or even the adjacent liquid - inside a
collapsing bubble adequately for these extreme physical conditions. Each of the
models considered in this study makes different approximations when treating

the hubble's interior. In order to compare the results of the different formulations,
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the assumptions and limitations of each must be considered. These assumptions
and their general validity for the physical conditions encountered during the
calculations are discussed in this Section. Although we have no a priori certainty
of the accuracy of the theoretical results, an evaluation of the validity of the
assumptions will be made at the maximum values of temperature and pressure
predicted by the more reliable :~odels, for the range of experimental parameters
stated above. These values .~n-esent the worst-case scenario predicted by the
theories and should provide a good test case to their applicability. These values are
10,000 K and 30,000 bars for the gas temperature and pressure, respectively, and
2,000 K and 30,000 bars for the liquid, For the collapse ratio, (Ru/Ry), & value of
0.12 is used, which corresponds roughly to a 500-fold increase in the gas density.
A wall velocity of the order of the speed of sound in the gas (340 m/sec measured at
STP) is also used.

Five major assumptions were made in deriving the three formulations
considered in this study. Four of them are common to all the models. These are:
(&) The bubble remains spherical; (b) The bubble contents cbey the ideal gas law; (c)
The internal pressure remains uniform throughout the bubble; and (d) No
evaporation or condensation occurs inside the bubble. The fifth assumption
pertains to the thermodynamic behavior of the liquid surrounding the bubble. Let
us now consider the first four assumptions.

Although most criteria of surface instabilities (discussed in the next Section)

do not predict the bubble motion to remain radially symmetric under the

conditions given above, assumption (a) is believed to remain valid based on the




experimental observations, namely the light scattering data. This evidence will be
presented in Chapter IV in more detail.

The ideal gas law assumption (assumption (b)) is known experimentally to be
valid in the limit as the specific volume v (volume/unit mass) approaches infinity,
or, equivalently, as the pressure of the gas approaches zero. The simplest way to

test this assumption is by considering van der Waals equation of state,

(p - f;) (v-b)=R,T, (3.30)

where Ryis the universal gas constant . The term a/v?is intended to correct for the
intermolecular attraction and the constant & to account for the volume occupied by
the molecules. At the minimum volume considered in this study, i.e., when
Rpin/R,= 0,12, the term a/v?s 0.1 bars. For the same conditions, the value of &
corresponds to a correction to the volume of less than 0.5 per cent. Thus, for all
practical purposes, assumption (b) may be considered valid.

Assumption (c) states that the momentum equation (3.13) reduces to p=p(2).
The pressure perturbation contributed by each term in the momentum equation
has been considered by Prosperetti (1988). He concluded that

dp _ O(MB-E— : Mu”) (3.31)
b Cgto
where Mjis the Mach number of the bubble wall, ¢, is the speed of sound in the gas
and ¢, is a characteristic time. If ¢, is substituted by the theoretical minimum
collapse time (~ 10 nsec), R by the equilibrium radius (15 microng), and ¢y by its

value at the maximum temperature reached inside the bubble, then R/c,t,has the
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value of ~ 1. Equation (3.31) then reduces to 4p /p=0(Mj). When the temperature
dependence of ¢, is taken into account, the Mach number for the bubble wall M,
was found to be around 0.2, It thus appears that pressure perturbations may
occur inside the bubble in some cases, although the conditions necessary for the
formation of shock waves inside the bubble are not likely to be realized.

Assumption (d) states that no condensation or evaporation occurs during the
bubble motion. Evaporation would occur during the collapse when the gas
temperature is increased by the mechanical work done by the liquid, Some of this
energy is transferred to the liquid through regular thermal conduction, causing
some liquid molecules to evaporate. As the bubble rebounds and expands rapidly,
the temperature is decreased, causing the same molecules to condense, releasing
heat into the gas. The result of this process is to transfer energy from one part of
the cycle to the other, acting as a form of thermal damping, It should also be
noted, however, that collapse times are on the order of tens of nanoseconds which
limit the amount of energy deposited into the liquid. Thermal relaxations times of
water are on the order on microseconds. According to the models, temperatures
as high as 2000 K may be reached in the liquid side of the interface, as stated above.
If we assume that this is the case, there is little doubt that assumption (d) is
invalid to some extent, although the short time (<20 nsec) during which these
temperatures persist will probably limit the amount of vaporization. In order to
estimate this amount, the temperature and pressure during the collapse should be
compared to the vapor pressure curve for the liquid. This has been done in Fig, 27
by plotting the pressure vs. temperature in the liquid during one acoustic period

for a 20 pm bubble driven at 1.45 bars at 23.6 kHz representing the conditions
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stated at the beginning of this Section. The vapor pressure curve for water is also
shown, which defines the boiling point of the liquid as follows: if at a given
temperature the pressure exerted on the liquid is less than its vapor pressure,
then the liquid boils. The vapor pressure curve of water was used in Fig. 27 since
the vapor pressure of glycerine is lower. It can be seen from this figure that the
boiling point of the liquid is never reached for values below the critical point. At
the critical point, the liquid and vapor phase do not separate, i.e., there is no real
difference between the two phases. In this case, the latent heat of vaporization is
zero and no thermal damping due to vaporization exists, Nevertheless, the
thermodynamic properties of the bubble would be very different from those
assumed at equilibrium, and the model becomes invalid under these conditions.
Thus, of the four assumptions considered, (d) is the most likely to be violated.

The fifth major assumption made in the formulations pertains to the
thermodynamics in the bubble's interior. This assumption is reflected in the
expression for the internal pressure, p,. The approximations made in each
formulation in order to obtain this expression will be discussed next.

First, let us consider the least sophisticated of the models, the polytropic
approximation model. This model is mostly limited by the small-amplitude linear
approximation made in calculating the polytropic exponent. In addition, this
approximation makes the integral over a cycle of p-dv identically zero, resulting in
no net loss of energy associated with the heating and cooling of the gas
(Prosperetti, 1988), i.e., no thermal damping. This type of damping is known to be
the main energy dissipation mechanism for the parameters under consideration.

Furthermore, the polytropic exponent is nearly equal to 1, i.e., the bubble motion is
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isothermal, for these same parameters. This results in the bubbles reaching
extremely small radii during the collapse and, therefore, unreasonably high
pressures and low temperatures. The values of the internal temperature and
pressure obtained with this model were thus considered unrealistic and are not
discussed any further in this study.

In Prosperetti's model, a spherically symmetric, time dependent temperature
field is obtained in order to evaluate the expression for the internal pressure. The
temperature at the bubble wall is assumed to remain undisturbed, i.e. equal to the
ambient temperature. This assumption has been shown to be valid at low
pressure amplitudes by Prosperetti (1988). By equating the heat fluxes across the

interface, he obtained the following expression:

Ty-T. _ KaCmpe)? (3.32)
Tc - Ta Klelpl ’

where T, and 7', are the center and surface temperatures respectively, and the
subscripts g and / indicate values in the gas and liquid respectively, The right-
hand side of (3.32) has typical values of 103, which indicates that the change of the
surface temperature is negligible compared to the gas temperature, During
violent collapses, however, values of K;, C,; and p, can actually approach values
comparable to those in the liquid, and the right-hand side of (3.32) becomes as
large as 1/3. In fact, results obtained with Flynn's formulation have shown that
the temperature on the liquid side of the interface can reach values 1/3 times the
temperature in the cavity, By assuming that the temperature of the liquid at the

interface remains undisturbed, the thermal gradient at the interface becomes
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larger, increasing the amount of heat diffusion into the liquid. Thus, it is expected
that the results of this model would be overdammped for the parameters under
consideration.

In Flynn's model, the energy equation in the liquid is included in the
derivation of the expressions for the internal pressure and temperature. In order
to -educe the amount of computer time, however, Flynn was forced to make
further approximations. Although Flynn's formulations appears more
complicated, it was found that they both required about the same amount of
computer time to obtain the solutions for the parameters used in this study.

In Chapter IV, theoretical results of these three models will be presented and
compared with each other. The only known comparison of theoretical results of
bubble pulsations using different models is that by Lastman et al. (1980) who
considered five different radial equations. They assumed adiabatic motion and
found "similar quantitative behavior, even under intense cavitation conditions",
although they only compared pulsation amplitude and phase of collapse. As
shown above, however, the internal temperature and pressure during the collapse
are very sensitive to R, and ¢.. Thus, it is expected that the major difference
among the theoretical results of the formulations considered in this study will be

in the internal temperature and pressure.

II1. C. Surface Instabilities

In order to understand the long term behavior of bubbles (over thousands of

acoustic periods) in cavitation fields, the different mechanisms controlling the size
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and shepe of the bubbles must be considered first. The two principal mechanisms
are gas diffusion across the gas-liquid interface and surface instabilities. Both of
these processes can cause the bubble to either grow or shrink depending on the
physical conditions. Surface tension, by creating a concentration discontinuity
across the interface, forces gas out of the bubble. On the other hand, this diffusion
can be "rectified" by the action of the sound field, and the bubble can be made to
grow. Likewise, surface waves can aid in the growth or dissolution process
through the generation of acoustic streaming near the bubble (Gould, 1975).
Surface waves also have been observed to cause the ejection of microbubbles,
serving as an efficient mechanism of bubble-size reduction (Neppiras et al., 1969).
Thus, the time evolution of acoustically driven bubbles is controlled by many
factors and the fate of each bubble is determined by, among other things, its
equilibrium size and the driving pressure amplitude. In this Section, some
theoretical background of surface instabilities will be presented as well as a recent
instability threshold curve calculated and measured by Horsburgh (1990). The

phenomenon of rectified diffusion will be discussed in the following Section.

When a large bubble is driven at high enough amplitudes, it has been observed
to become unstable, usually breaking up into a cloud of smaller bubbles. Smaller
bubbles, however, are able to retain their spherical shape longer due to the
stronger surface tension effects. These instabilities are cause by the large
accelerations experienced during the collapse of the bubble and near the point of
minimum radius where the motion is rapidly stopped and reversed. An order of

magnitude calculation indicates that a liquid-gas interface becomes unstable
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when the inward acceleration of a bubble wall exceeds a critical value 46/pR?
(Hsieh et al., 1960).

When bubbles become spherically unstable in a levitation cell, they can be seen
to move about in an erratic manner, apparently due to the nonlinear coupling
between the sound field and the surface oscillations. The visual observation of this
"dancing" motion was used by Eller and Crum (1970) to measure the pressure
threshold for instabilities for a range of bubble radii. Except for the less common
occurrences of stable surface oscillations, instabilities usually become visually
obvious to the observer, especially if the driving pressure is relatively large. This
surface oscillation threshold has been measured and calculated in the past by
several people (Plesset,1954; Hsich, 1974; Prosperetti, 1978) and more recently by
Horsburgh (1990).

The calculation of the threshold for surface waves made by Horsburgh (1990)
for R, in the range 10-60 microns is shown in Fig. 28. These calculations were
made for air bubbles in water. Combinations of R, and p, above this curve result
in the excitation of surface waves, while those below do not. The oscillations of this
curve are due to the harmonic resonances of the radial motion. At these
resonances, lower pressure amplitudes are required to excite surface waves, due
to the larger bubble response. The curve in Fig. 28 will be used to demonstrate the
existence of previously unknown islands of stability in the region above this
threshold curve. For completeness, a brief description of the equaticns used to
calculate this threshold is included here. The reader is referred to Horsburgh

(1990) for more details. The model is briefly described as follows:
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Let the bubble boundary be perturbed from a spherical surface of radius R to a

surface with radius vector of magnitude r,, Then one may write

r.=R+2anYn, (3.33)
n

where Y, is a spherical harmonic of degree n, and the a,'s are functions of time to
be determined. The growth or decay of a,(t) from a small initial value determines

whether the spherical shape is stable or unstable. Assuming that

an(t) << R(), (3.34)

and keeping only terms of 1st order in a, in a linearized perturbation procedure,
Plesset (1954) found that the a,'s are independent of each other and that they
satisfy the following differential equation:

dn+ %R hn <A Qn = 0. (3.35)

Assuming that the density of the liquid is much greater than that of air, A is given
by

=(n;1)R'-(n 1) (n +1) (n +2) L, (3.36)
R ok

These equations were derived using an incompressible and inviscid liquid
assumption and will thus be integrated along with the corresponding radial

motion equation, namely Rayleigh-Plesset's:
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RR + ﬂR l Da(R,t) - palt) - &Z 4“R (3.37)

where all the variables are defined as in Section B of this chapter and usually, a
polytropic approximation is assumed. The threshold, p¥, is defined as the value
of p4 below which the coefficients a, decrease and above which they increase in

time.

IOI. D. Rectified Diffusion

Rectified diffusicn is a nonlinear phenomenon in which a gas bubble in a
liquid can be made to grow by the action of the sound field. This phenomenon is a
second order effect in the radial pulsations (proportional to AR?) and constitutes an
important mechanism for the instability of a bubble in an acoustic levitation
system, Although its effects usually are noticeable only over hundreds of
thousands of periods, eventually it causes the bubble to exceed resonance size and
to be ejected from the sound field. Before this occurs, however, the bubble will
often develop surface instabilities which usually result in bubble breakup. In this
way, rectified diffusion is an indirect cause of bubble instabilities.

In this study, we are concerned with the validity of the available rectified
diffusion formulations at high amplitudes. As expected, most of the existing
formulae for calculating the growth rate of bubbles have been obtained after
making several approximations, the most notable one being that a negligible

amount of gas diffuses into the bubble during one acoustic period. As pointed out
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by Eller and Flynn (1965), this is not always the case for large amplitude
pulsations. However, because of the complexity of the mathematical problem and
the time constraints, the formulation developed by Eller and Flynn (1966) in which
the above approximation is made will be used here. The model can be applied to
any periodic radius-time curve and in this respect it is rather general. Using an
integration routine written by Church (1988), the rectified diffusion threshold
shown in Fig. 29 was calculated. The threshold p;?P was calculated for 70% air-
saturated water at 21 kHz for B, in the range 5-60 microns, For 4 given R,, bubbles
driven at a value of p, above this curve will grow while those driven below will
ghrink in time. Similar to the surface wave thresholds, the curve in Fig. 29
exhibits variations in the threshold p,R? due to the harmonic resonances of the
bubble motion. Generally, at the resonances, a lower value of p, is needed to make
the bubble grow due to the larger response.

The following is a brief outline of Eller and Flynn's formulation for rectified
diffusion. As stated before, the main approximation is to neglect any diffusion of
gas into the bubble during a single acoustic period. The problem to be solved is
thus determining the gas concentration field ¢(r,4) in the liquid (not the bubble)
from which the rate of change of the number of moles of gas in the bubble will be

obtained from

ddt&=_4nDR2g__f‘_lr=R , (3.38)

where D is the gas diffusion constant and ris the distance from the center of the

bubble. The diffusion equation to be used is Fick's law of mass transfer,
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%:3—‘;+ﬁ.§c=pv%, (3.39)

where u is the velocity of the liquid at . The boundary conditions are given by
c(r0)=a, r >R (3.40)

limcirt)=a,
P —yoo

(8.41)

¢c(Rt)=¢e. t>0, (8.42)

where ¢; is the initial, uniform concentration of gas and also the concentration of
gas at infinity, and ¢, is the concentration of gas in the liquid at the bubble wall. ¢,
is given by Henry's law, which states that the concentration of gas dissolved in a
liquid is directly proportional to the partial pressure of the gas outside the solution.
Hence, c¢g = k! p, where & is Henry's constant and is generally a function of
temperature. Introducing a "high" frequency limit in which the rapidly
oscillating terms of the gas concentration field are ignored, Eller and Flynn
arrived at the following cexpression for the time-averaged rate of change of the
number of moles of gas in a bubble,

QAL < 4nR, D A+R, (;g?)“"] cu -4, (3.43)

where ¢,, is the value of ¢, when R = B, and A and B are given by




113

T 7
=11 B ~1( (R}
A TJ; Lat and B Tfo (R) dt (3.44)

respectively, ¢ is the time and T is one period of the bubble pulsation. Defining the
threshold pressure as the pressure of the acoustic field at which the average
diffusion is zero, we have

Cixl1+ _ZQ.]A,

co [ Rp-|B (8.45)

Thus, A and B are calculated for a given R, and p, such that the above equality is

satisfied to within a certain criterion. When this criterion is met, the value of p,

is, by definition, the rectified diffusion threshold, p,?P.




Chapter IV
Results and Discussion

IV. A. Introduction

The first experiment performed in this study was designed to determine the
range of active bubble radii in a cavitation field at pressure amplitudes above 1 bar,
that is, above the pressure threshold for light emission (sonoluminescence, SL).
This determination was made by measuring the phase of SL relative to the sound
field and comparing it to the phase of bubble collapse predicted by the different
theories of radial bubble pulsations. Because the SL flashes are very short, and
assuming that they are emitted at the time of the collapse, one can then measure
the phase of SL to determine the phase of bubble collapse. Fig. 30 illustrates these
observations by plotting the light flashes as detected by the PMT (top trace)
simultaneously with the acoustic pressure (bottom trace) as a function of time.
These data were taken at f=21 kHz, p,=1.5 bars in water. According to the
theories, the phase of bubble collapse varies over a wide range of values depending
on the bubble size and pressure amplitude, as can be seen in Fig. 24, p. 93. It is
thus possible to estimate the bubble sizes that are active during cavitation by
measuring the phase of SL emission, assuming the theories are correct and that
SL is emitted during the collapse of the bubble. Furthermore, if enough

information is available about the bubble radii and the pressure amplitude, the

applicability of the models c..u be tested.
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This initial experiment was performed in a cavitation field generated in a
levitation cell at around 1.5 bars of pressure amplitude. Fig. 31 illustrates the type
of cavitation generated for this experiment. This cavitation consists of streamers
of bubbles nucleated near the cell wall or the liquid surface and driven towards the
pressure antinode by radiation pressure forces also known as Bjerknes forces
(Crum, 1975). The phase of SL emission was measured to be about 200 degrees in
air-saturated water with a standard deviation as large as £ 15 degrees. These
large fluctuations are not due to experimental error. Instead, the large scatter in
the data is probably caused by the influence that the cavitation bubbles had on the
acoustic pressure field in the levitation cell. More spacifically, the sound scattered
by the bubbles may be large enough to affect neighboring bubbles, causing the
pressure field experienced by each bubble to fluctuate significantly from one
acoustic period to the next, Furthermore, the presence of bubbles in the cell is
known to change its resonance frequency, causing the cell to "detune" and the
pressure amplitude to change. Since the phase of collapse depends on the
pressure amplitude, these fluctuations result in a large standard deviation of the
data, making the determination of the bubble sizes very imprecise. In addition,
the bubbles in the cavitation field could not be assumed to pulsate with radial
symmetry, and the effect of asymmetric motion on the phase of the collapse was
difficult to determine. The cause of the asymmetric bubble motion will be
discussed later. Thus, although the data obtained allowed an estimate of the

range of initial bubbie sizes based on the theories by assuming a constant pressure

amplitude, more data were needed before any comparison between the theories
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could be made. Thus, a better experiment for studying cavitation was needed.
Fortunately, a solution for overcoming these difficulties was soon found.

During some of the initial experiments it was noted that the scatter in the
measurements of the phase of SL was occasionally reduced to less than + 1 degree,
i.e., down to the noise level, making the phase practically constant in time. After
many trials the conditions necessary to reproduce this phenomenon were fourd. It
was learned that as the pressure was increased the degassing action of the sound
fieid was reducing the number of bubbles, causing the cavitation streamers to
become very thin until only a single bubble remained. The remaining bubble was
approximately 20 microns in radius and positioned near the antinode. At this
point, it was remarkably stable, remained fairly constant in size and was later
determined to be pulsating in a purely radial mode. Furthermore, with the room
lights dimmed, a greenish luminous spot the size of a pinhead could be seen with
the unaided eye, near the bubble's position in the liquid. The luminous spot was
then located at the bubble's geometric center by observing it through a microscope.
This light emission was sonoluminescence generated during the collapse of the
bubble at its minimum radius. Although this type of luminescence had been
observed before by several researchers (Saksena et al., 1970, etc.), very sensitive
instruments were usually required and it had never been cbserved from a single
bubble.

The stabilization of a single, radially pulsating bubble was achieved in slightly
degassed water-glycerine mixtures with glycerine concentrations below 60%. A

description of the visual observations of the stabilization process as the acoustic

pressure was increased can be given as follows: After injecting a gas bubble with a
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small syringe at about p,=0.8 bars, the bubble exhibited dancing motion indicative
of surface waves and asymmetric collapses (Lauterborn, 1982), As the pressure
amplitude was increased, the dancing motion became more vigorous, causing the
bubble to frugment. A bubble cluster was then formed as the residual bubbles
moved around the parent bubble. In glycerine mixtures with concentrations
greater than 60%, the radial stability became very difficult, if not impossible, to
achieve. The buuble system looked more like a cloud and very often developed into
what has been termed a "shuttlecock". When observed through a microscope, the
shuttlecock appeared o be a cloud of microbubbles surrounding a larger bubble of
approximately 50 pm in radius. Through the interaction with the sound field, this
cloud developed a definite puttern of motion from one side of the bubble to the other.
In contrast with single bubbles, the position of the shuttlecock was not on the
levitation cell's axis but a small distance away from it (0.5-1.0 cm). Microhubbles
appeared to be ejected from the side of the cloud directly away from the antinode
and were immediately attracted towards the cloud by Bjerknes forces (Crum,
1975). As the microbubbles reached the opposite end of the bubble cloud from
which they had been ejected, they were pulled in, possibly by interbubble forces
directed towards the center of the cloud. Thus, a rotational pattern was
established. For lack of a better analogy, the three dimensional pattern formed by
the bubbles has been likened to that formed by the earth's magnetic field lines.
The shuttlecock was observed to emit a low rate of SL flashes,

If the amount of glycerine were less than 60%, however, the bubble cluster
was observed to become smaller and denser as the pressure amplitude was

increased. Just before the stability threshold, the cloud could be seen to collapse
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upon itself until, at a rather well-defined value of the pressure, a single radially
pulsating bubble emerged. As soon as this transition occurred, the count rate of
SL increased to nearly one flash per cycle, Instead of the usual distorted shape
when streamers were present, the output of the side pill transducer was now very
clean and symmetric, When ohserved through the microscope, the blurry but
unmistakable outline of the radial pulsation could be discerned. When the sound
field was turned off, the bubble could be seen to rise towards the surface. The
pulsation amplitude was estimated to be between 4 and 5 times the equilibrium
radius.

An interesting observation already mentioned was the well defined pressure
threshold, p.®T, at which stability was reached, in addition to a hysteresis effect.
After reaching stability, the pressure could be decreased below the threshold p,T
and stability was maintained. In general, stable bubbles could be driven at values
of the acoustic pressure 0.1 bar below the stability threshold. If driven above a
certain pressure, the bubble disappeared possibly due to dynamic instabilities. For
convenience, we will call these the lower, p,ST, and upper, p,ST, stability
thresholds respectively. These thresholds are illustrated in Fig. 32. In water, for
example, p,ST was measured to be around 1.2 bars, p,ST at around 1.1 bars and PusT
at around 1.3 bars. The range of pressures at which bubbles were stable was 1.1 ¢
Pa s 1.5 bars depending on the liquid mixture. For water, it was 1.1 <p, $1.3 bars
whereas for GLY 42 it was 1.3 < p, < 1.5 bars. Thus, higher concentrations of
glycerine required slightly higher pressures in order to achieve radial stability. It

was also found that these ranges could be enlarged (towards the lower pressures)

by decreasing the dissolved gas content of the liquid. As the amount of dissolved
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gas increased, regions of instability within the stability pressure range began to
appear. The upper pressure threshold, p,:S7, at which the bubble disappeared,
remained constant, however. It became clear then that rectified diffusion played
an important role in the stability process.

The observation of an upper pressure amplitude threshold, p,ST, above which
pulsating bubbles cannot exist, seems to confirm the existence of a transient
cavitation threshold as defined by Flynn (1964, 1976b). According to Flynn (1975b),
the motion of bubbles pulsating with an expansion ratio (R,../R,) above a certain
value become inertia controlled. When that happens, the collapse of the bubbles
tends to be rather violent, often resulting in the destruction of the bubbles during
the collapse. The bubbles studies here (~20 um) fall under the "large" category (> &
um) which, according to Flynn's model of cavitation bubbles, should exhibit
thermally-related effects (e.g. sonoluminescence) before reaching the transient
cavitation (dynamical) threshold. For 20 pm bubbles, Flynn predicted a dynamical
threshold of R,./R, = 2.2. These predictions appeuar to be confirmed by the
observations made here, since SL has been observed from stably pulsating bubbles.
After reaching a value of the expansion ratio R,./R,= 4, the bubbles become
unstable, i.e., disintegrate. Although the observed values of the dynamical
threshold differ somewhat from those predicted by Flynn, it should be noted that
the threshold values defined in his model "most likely act as lower limits to
experimental thresholds", as pointed out by flynn (1975b).

Despite the lack of understanding about the particular mechanisms involved,

the discovery of a single bubble pulsating at large amplitudes has many important

consequences. Among these is the ability to acquire new, previously unavailable




and more accurate data about the motion of bubbles in cavitation fields. These
data include (i) an experimental radius-time curve of the bubble, which allowed us
to measure the phase of the collapse, (ii) the phase of sonoluminescence emission,
end (iii) the pulsation amplitude which can be used to test the applicability of the
bubble models. In addition, the simultaneity of SL and the collapse of the bubble
may be verified. We will preseut the results of the single bubble experiments first,
along with the theoretical results. After this, the results of the measurements of

the phase of SL in multibubble cavitation fields will be discussed.

IV. B. Light Scattering Experiments
1, Comparison between Theories and Experiment: Prosperetti's Theory
a. Radius-time Curve of a Single Bubble

Tigure 33 shows a plot of the bubble radius vs time (R-t) at p4=1.2 bars in
GLY21 as measured by the photodetector. This figure is a single trace obtained
from the LeCroy oscilloscope. The y-values have been converted from intensity to
radius using the transfer function obtained during the calibration procedure
(Section II.D.2.a). The uncertainty has been calculated to be about £ 5 um. This
figure is a typical example of an R-t curve obtained from a single bubble pulsating
at large amplitudes with a period equal to that of the driving pressure. R-t curves
for a range of pressures between 1.1 and 1.5 bars were obtained for all the liquid

mixtures. The pressure amplitude was determined with an accuracy of about 0.1

bars, although changes of Ap4=10.01 bars were possible with the apparatus used in
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this experiment. All of the radius-time plots obtained at these high driving
pressure amplitudes are characterized by a relatively slow expansion (~15-20
usec), followed by a rapid collapse (~ 5-10 pusec) after which several rehounds occur
before the next cycle starts., The minima of these radius-time curves are bounded
by the background noise level of the detection system, which in this case was
around 20 microns. The occasional glitches in the data causing the bubble radius
to drop below 20 microns were due to electrical random noise and therefore have
no significance. Curves similar to Fig. 33 were also obtained for the other
mixtures and representative curves can be found in Appendix A, Figs. A8-A9,
The number of radial minima during one cycle was usually 4 or 5, although 3
minima occurred occasionally. The differences in the traces taken in different
liquids were mainly in the amplitude of the pulsations and the phase of the first
radial minimum,

For comparison, a theoretical R-t curve using the same experimental
conditions as those of Fig. 33 with R,=20 um is shown in Fig, 34. The reasons for
choosing this value of R, will be explained below. The overall shape of the two
figures is obviously very similar, including the magnitude of the bubble response
and the rebounds after the collapse. One discrepancy, however, is the number of
minima and the apparent increase in the amplitude of the rebounds in the
experimental R-t curve (Fig. 33), as opposed to the decrease predicted by the theory
(Fig. 34). Some of these small discrepancies will be discussed in the next Sections.
Nevertheless, the resemblance is obvious. Periodic pulsations such as those seen
in Fig. 33 were observed continuously for thousands of acoustic periods. These R-t

curves and the observation of the spherical outline of the bubble pulsations
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through the microscope when bubbles were levitated in the rectangular cell
constitute the most convincing evidence of the periodicity, stability and spherical
symmetry of the bubble pulsations.

Several parameters of nonlinear bubble pulsations have been measured using
the R-t curves of single bubbles pulsating at large amplitudes (R« /R, > 3). In the
next Sections, some of these measurements will be presented and compared to the
theoretical values predicted by the different formulations. However, since it was
not possible to determine the equilibrium bubble size accurately, calculations were
made for R,=15, 20 and 25 microns. Although the mechanism by which the
bubbles are stabilized is still not well understood, the bubbles did appear to remain
constant in size for the same acoustical parameters (pressure amplitude, gas
concentration, etc.). However, not all of these parameters were controlled during
the experiments and, for this reason, it cannot be assumed that the data were
taken with the same bubble radius. One of the objectives of this study, then, is to
determine which value or values of R, give the best agreement between a
particular theory and experiment for the three independently measured
parameters: pulsation amplitude R,,,, phase of the bubble collapse ¢, and the
number of radial minima M. If agreement is found for the same value of R, for all
three parameters, it can then be said, with reasonable certainty, that the theory
and experiment agree for those values of R,. If different values are found, it can
then be said that the theory and experiment disagree. Since the theories used for

comparison with the experimental results have been shown to exceed their limits

of applicability, perfect agreement is not expected. Thus, a second objective of this




study is to estimate the range of parameters over which these theories are
applicable.

Comparison between the measurements and Prosperetti's model will be made
in the next three sections. Comparison with the other models will be made in
Section B.1.e with the intent of determining the most accurate theory, although
this has proven to be a difficult task due to the large experimental error, It will be
shown that the difference in the predictions of the three theories using the same
conditions is smaller than the error bars of the experimental data. Instead, the
consistency of the results of each particular theory has been used as a test of
applicability. In Section B.2, the theoretical values of the internal temperatures,
pressures and relative densities predicted by Prosperetti's and Flynn's
formulations will be compared. These values will be shown to differ by as much as
100% in some cases. The theoretical temperature calculated at the experimentally
determined threshold for SL will be discussed and compared with previous
measurements. In Section B.3, results for sonoluminescence emitted from a
single bubble will be presented. Also, the experimental radius-time curve will be
plotted simultaneously with the SL flashes in order to demonstrate the

simultaneity of the bubble collapse and the light emission,

IV.B. 1 b, Pulsation Amplitude

For each of the R-t curves obtained in the previous Section, the pulsation

amplitude R, was measured and plotted versus p, as shown in Figs. 35-39, In

the same figures, values of the theoretical predictions made by Prosperetti's model
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for the same experimental conditions have been plotted for R,=15, 20 and 25
microns, as indicated in the legend. Each measured data point in Figs. 35-39 was
taken from stored oscilloscope traces each consisting of several acoustic periods
for each value of p, . Most of the time only one trace was stored for each value of p,
due to the large amount of time and storage space that each trace required. The
error bars placed on these data represent the combined experimental uncertainty
of £ 5 microns, as explained in Section II.LE.1. Because of the difficulty in
stabilizing bubbles in GLY60, only a few data points were obtained. Some of the
theoretical curves exhibit abrupt changes caused by resonances of the radial
motion excited at different values of p,. Bifurcations into period-2 and period-4
solutions also occur, especially for the 20 and 25 um bubbles. These resonances
and bifurcations have been discussed in Section II1.B.2 and illustrated in Figs, 23
and 24 where the variables were plotted as a function of R, instead of p,, When p,
is varied, resonances occur due to the shifting of the peaks toward smaller radii.
Although values were calculated in increments of p,=0.01 bars for each value of
R,, not all of the data were displayed. These gaps in the theoretical curves indicate
that no steady state solutions were found in a reasonable (20 acoustic periods)
amount of time.

In general, comparison of the pulsation amplitude data indicates better
agreement with the 15 um bubble, although this is not true in every case. The
experimental data for GLY21, for example, agrees partially with the theoretical
results of the 20 pm bubble. It should be noted here that it was probable that the
bubble radius changed as the pressure amplitude was increased. In fact, closer

agreement was found in GLY21 with the theoretical results using the 15 pm
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bubble at the lower pressures but with the 20 um bubble at the higher pressures.
The experimental data for GLY42 could even be interpreted as a decrease in the
bubble radius below 15 pm at the lowest values of p4. This increase in radius with
pressure amplitude may be effectad through the phenomenon of rectified diffusion
which, in general, results in larger bubble growth rates as p,is increased, as
stated in Section IIL.D.

Theoretically, the resonances and bifurcations occur in different places of the
bubble response curve, the exact location being very sensitive to the exact set of
parameters, even for the same values of p, and R,. It was thus not expected to find
agreement between theory and experiment in the regions where quick transitions
occurred. It is interesting to note that although subharmonic motion was
predicted quite often in the range of parameters considered, it was never observed
in the laboratory.

In summary, the pulsation amplitude data shown in Fig. 35 (water), Fig. 37
(GLY35) and Fig. 39 (GLY60) imply that R,~15 pm and remains approximately
constant ‘or the range of p,. Fig. 36 (GLY21) and Fig. 38 (GLY42), however, imply
that R, increases with p,. In GLY21, R, increases from 15 pm to 20 um, whereas
in GLY42 it increases from less than 15 pm to about 15 pm. It should be noted that
in the last two sets of data (GLY42 and GLY60), the values of p, reached slightly
lower values than the other sets, which may explain the lower values for R,.
Period-2 motion was predicted for the 20 um bubble in GLY21, GLY35 and GLY60
for some values of p4. Period-4 motion was predicted only for water (Fig. 35) for 25

pm.
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IV. B. 1. c. Phase of Collapse

From the same R-t curves considered in the previous Section, the phase of
collapse ¢, was measured using the procedure described in Section 11.D.2.b. They
have been plotted in Figs, 40-44 along with the theoretical predictions of
Prosperetti's formulation for 15, 20 and 25 um bubbles. The estimated total error of
the calibration procedure was 1 § degrees and it is indicated by the error bars.
These measurements involved a different calibration procedure and the data
obtained are therefore considered independent from the pulsation amplitude data.

The results of the phase of collapse measurements were very similar to the
pulsation amplitude measurements in the previous Section. In summary, these
results can be interpreted as follows: In Fig, 42 (GLY35) and Fig, 44 (GLY®60),
R,~20 um and remains approximately constant. In Fig. 40 (water), R, appears to
increase from 10 S R, s 15 um to 15 S R, < 20 um as p, increases, wheress in Fig, 41
(GLY21) and Fig. 43 (GLY42), R,~15 um at low p, and R,~20 um at high p,. The
largest disagreement between these results and the results of the previous Section
was found for GI.Y35 and GLY42. The collapse phase data for water predicted
larger radii than the pulsation amplitude data shown in the previous Section,
although the discrepancy was small enough to be within the experimental error,
The reason for this discrepancy is not clear. The fact that more data were taken
for GLY42 and over a larger pressure amplitude range thaa the other liquids may
be part of the reason. It should also be pointed out that some of the data for GLY42

were taken over a two week interval.
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IV.B. 1. d. Number of Radial Minima

A third experimental determination that can be used to test the theory is the
number of radial minima observed during one acoustic period. This parameter is
mainly dependent on the bubble size, although some dependence on the pressure
amplitude was found from the calculations, as pointed out in Section IILB.2
Figs. 45-49 show the number of minima measured in each liquid mixture and
those predicted by Prosperetti's model for 15, 20 and 25 microns. Non-integer
values of the measured number of minima indicate that two different values were
observed in the same radius-time curve. In that case, the mean of the two values
was plotted. The error bars indicate the estimated error in the measurement.
This error was mostly due to random noise in the R-t curves, which sometimes
resembled the real radial (intensity) minima and interfered with the counting
process. Double values in the theoretical data indicate that a different number of
minima occurred per period in the steady state solution, usually due to
subharmonic motion i.e., m>1 (see Chapter III). Note that subharmonic motion
observed in the figures showing the pulsation amplitude and collapse phase was
not always reflected in the figures showing number of minima, This is because
only an integer number of minima can occur in one acoustic period, unlike the
pulsation amplitude and collapse phase, which can change in a continuous
fashion,

The number of minima observed were, in general, fewer than the number
expected from the theoretical predictions based on the pulsation amplitude and

collapse phase measurements. This means that the bubble radii predicted based
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on the number of minima were larger since, as sh\own previously, larger bubbles
pulsate with fewer minima. For instance, Figs. 45 (water) and 46 (GLY21) predict
R,~20 um at low values of p, and R,=25 pm at the higher values of p,. Figs. 47
(GLY35) and 48 (GLY42) predict R,~20 pum remaining constant for the range of p,
congidered. The results of Fig. 49 (GLY®60) are very imprecise due to the few data
points taken. It is not clear why the number of minima observed was fewer than
predicted by the theories, The explanation may be linked to another anomalous
observation in the rebounds of the radius-time curves. As can be seen in Fig. 33,
the bubble rebounds appear to increase in time within each period instead of
decreasing in the normal decaying fashion, as shown in Fig. 84 where the
theoretical R-t curve has been plotted. The experimental R-t curves seem to
indicate much larger amplitudes for the rebounds. Larger amplitudes would
indeed result in fewer rebounds because each rebound would require more time.
In this respect, the observed fewer number of minima is consistent with the large
rebound amplitudes observed in the scattered-light data. However, no explanation
has been found for this increase in the amplitude of the bubble rebounds.
Additional evidence on the size of the bubbles can be obtained by considering
the periodicity of the solutions. For example, notice that period-two solutions were
predicted by the theory quite often for the 20 wm bubble, except for the case of water.
For the 25 um bubble few stable, period-1 solutions were obtained. However, all of
the solutions for R,=15 um were stable and with the same period as that of the
driving pressure. In this respect, the fact that only bubble pulsations with the

same period as that of the sound field were observed in the laboratory suggests that

the bubble radius was less than 20 um.
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The conclusions drawn in the last three Sections have been summarized in

Table 4 below.

Table 4. Summary of predictions of R, obtained from Prosperetti's

formulation.
Theoretical Range of R, for Single Bubble Pulsations

From R, From ¢, From M
water 10-15 um 13-18 pm 20-25 pm (>)*
GLY21 15-20 pm (>) 15-20 pm (>) 20-25 pm (>)
GLY35 15 um 20 pm 20 pm
GLY42 10-15 pm (>) 15-20 pm () 20 pm
GLY60 18 ym 20 pm 15-20 pm

. S ) o o 0 Mk ) ek G sl G G dat Gt b A O OGN S A GG S T WIS B S A S G G WA S S A WS S S G

* (»)indicates that the value of R, increased as p4 increased.

In summary, the data presented in the last three Sections may be interpreted
to indicate that the equilibrium radii of stabilized bubbles driven at pressure
amplitudes between 1.1 and 1.5 bars in different water/glycerine mixtures were
between 15 and 20 pm. It also is inferred from some of the data that the
equilibrium bubble radii increased as the driving pressure was increased. The
predicted values of R, based on the measurements of R, and ¢, are consistent for
2 of the b data sets. Inconsi:’'encies were found in the predictions for water,
GLY35 and GLY42, indicating a disagreement between theory and experiment.
The discrepancy in the water data is within the experimental error, however. The
measured number of minima indicated that the equilibrium bubble radii were

larger - between 20 and 25 um - in apparent contradiction to the previous results.




150

A possible explanation for this disagresment was given in terms of the larger than
expected amplitude of the bubble rebounds evidenced by the scattered-light data.
The moderate agreement found means that Prosperetti's theory, although fairly
applicable, is not a complete description of a cavitation bubble pulsating at these
amplitudes, The predictions of the theory should not, therefore, be considered
quantitatively correct but only accurate to within a factor of 2 for the parameters

under consideration.

IV. B. L. e. Comparison with the Polytropic Theory and Flynn's Theory

The pulsation amplitude, collapse phase, and number of minima calculated
using the polytropic theory and Flynn's theory for water and GLY42 have been
plotted in Figs. 50-565. For comparison, the experimental and Prosperetti's results
have been plotted simultaneously.

Let us first consider the results from Flynn's model. For clarity, only values
of R,=15 and 20 um have been plotted using the solid symbols as indicated in the
lagend. However, extrapolated values will be estimated for Flynn's and the
polytropic model data when necessary. The pulsation amplitude data shown in
Fig. 50 (water) indicate that R, 2 15 pm, increasing as 1, increases, Furthermore,
based on previous results, R, is most likely < 25 um, The data shown in Fig. 51
(GLY42) indicate that R, < 15 um, with R, increasing to 15 um as p, was
increased. The phase of collapse data shown in Fig. 52 (water), however, suggest
that 10 € R, < 20 um with R, also increasing as p, increases. The data in Fig. 53
(GLY42) indicate that 15 < R, < 20 pm increasing with p,. The number of minima
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data shown in Fig. 54 (water) imply that 20 < R, < 25 um increasing with p, and
those in Fig. 55 (GLY42) indicate that R,~ 20 um also increasing slightly with p,.
Note that, in general, the conclusions agree fairly well with Prosperetti's in the
previous Section. The results of Flynn's data have been summarized in Table &

below.

Table 5. Summary of predictions of R, obtained from Flynn's formulation.

Theoretical Range of R, for Single Bubble Pulsations

From R, From ¢, From M
water 10-15 um (>)* 10-20 pm (>) 20-25 um (>)
GLY42 10-15 pum (>) 15-20 um (>) 20 pm (»)

s e W . S G NI D) RS G S GEG M S S S S W S )t (o ) Wt bt e e e S s Gl S R bt b e S et S W b S G S O s W S

* (>)indicates that the value of R, increased as p4 increased.

Let us now consider the results from the polytropic model plotted in the same
Figures using the crossed symbols as indicated in the legend. The pulsation
amplitude data shown in Fig. 50 (\rater) indicate that 10 < R, < 20 um, increasing
as p, increases. The data shown in Fig. 51 (GLY42) indicate that R, < 15 um, with
R, increasing to 15 um or more as p, increases. The phase of collapse data shown
in Fig. 52 (water), however, suggest that 10 < R, < 20 um with R, also increasing as
Pa increases. The data in Fig. 53 (GLY42) indicate that 15 S R, < 20 pm increasing
with p4. The number of minima data shown in Fig. 54 (water) imply that 22 SR, <
25 um increasing with p,. Note that some of the data points are hidden behind the

solid symbols used to represent Flynn's results. For example, the number of

minima for R =15 is equal to 7 for the higher values of p, and for R,=25 is equal to §
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for the lower values of p,. Confusion can be avoided if one knows that the number
of minima usually decreased by one unit (at the most) as p, increased. The data in
Fig. 556 (GLY42) indicate that R,~ 20 um also increases slightly with p,. In

general, these values of R, agree fairly well with those based on Prosperetti's
predictions shown in the previous sections, and even better with those based on
Flynn's predictions. The results of the polytropic model data have been

summarized in Table 6 below.

Table 8. Summary of predictions of R, obtained from the polytropic

formulation.
Theoretical Range of R, for Single Bubble Pulsutions
Rmas [} M
water 15-20 pm ()* 10-20 pm (>) 2225 pm (>)
GLY42 10-15 pm (>) 16-20 pm (>) 20 pm (»)

it b G ) ot at Sk s S b ok ) S e St B d M et Gl Mt k) S M il S d Smnh e it Bk Ml M it o i U LAt Mt S i i S o oS et P Mt G M A M

* (>)indicates that the value of R, increased as p, increased,

From Tables 4, 5, and 6 it can be seen that the values of R, predicted by the
three formulations based on the same¢ measured parameter (R,q. ¢, or M) are
very similar - between 15 and 26 microns. Also, self-consistency was found for
Prosperetti's theory in 2 out of 5 liquid mixtures (GLY21 and GLY60), where the
values of R, based on the measurements of R,,, were the same as those based on
the measurements of ¢, as shown in Table 4. This was not the case for water,
GLY35 and GLY42, however. Since theoretical data for Flynn's and the polytropic

theories were calculated for water and GLY42 only (due to time constraints), the

lack of consistency in those two theories is not surprising. However, by looking at
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the results of Prosperetti's theory and the fact that all theories gave similar
results, we can conclude that although disagreement was found in some cases,
disagreement is not expected to occur in every case. In summary, two conclusions
can be made: 1) The measurements do not constitute a good test to discriminate
between the theories, since the experimental error is larger than the difference
between the values predicted by the theories using the same conditions; 2) the
values of R, predicted by each particular theory based on the experimental R,
and ¢, are not consistent, indicating that the models are not completely applicable
for the range of parameters considered here.

3ased on the theoretical results, some general comments will be made on the
characteristics of each mode! in the second half of this Section. As seen in Fig. 50
(water) and 51 (GLY42), Prosperetti's model predicted, in general, larger values of
the pulsation amplitude than the other two theories. As expected, the phase of
collapse is also larger, as seen in Figs, 52 (water) and 53 (GLY42). On the other
hand, the values predicted by the polytropic theory were the lowest of the three
theories. These results may be explained in terms of the thermodynamics in the
interior of the bubble.

For the case of the polytropic formulation, the small bubble sizes used in the
calculations resulted in a value of the polytropic exponent nearly equal to 1. This
means the motion is essentially isothermal. Isothermal motion produces no rise
in the internal temperature, allowing the radius to reach much smaller values,
and generating very high internal pressures and densities. In addition,

isothermal motion usually resulted in lower pulsation amplitudes for the range of

parameters considered in this study. On the other hand, adiabatic collapses
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produce h.gher internal temperatures, lower pressures and larger pulsation
amplitudes than isothermal collapses. Thus, the lower pulsation amplitudes
predicted by the polytropic theory can be attributed to the isothermal motion of the
bubbles.

The theoretical values of the pulsation amplitude using Flynn's formulation
are also consistently lower than those predicted by Prosperetti's, although
somewhat larger than those predicted by the polytropic's, as can be seen in Figs,
50 and 51. These results are the opposite of those expected if the same argument
given above were applied. As stuted in Chapter III, the rise in temperature at the
bubble wall predicted by Flynn's model would theoretically result in a decrease of
the heat flux away from the bubble and, consequently, a more adiabatic motion.
The thecretical results shown in Figs. 50 and 51, however, indicate just the
opposite. Thus, an alternative explanation had to be found. Besides the
expression for the internal pressurs, the only other significant difference between
Flynn's and Prosperetti's formulation is the extra comoressibility term in the
radial equation (sce Chapter III). Calculations made using Prosperetti's
formulations with the extra term found in Flynn's radial equation resulted in
slightly smaller pulsation amplitudes but much larger radial minima. The
larger radial minima are naturally expected to affect significantly tne internal
temperature and pressure during the bubble's collapse. It should be noted that
only period-1 solutions were predicted by Flynn's model, in contrast to
Prosperetti's which predicted period-2 and period-4 solutions.

In summary, Prosperetti's mode! was found to give the largest pulsation

amplitude and collapse phase, whereas the polytropic model was found to give the
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smallest. This was explained by the essentially isotherinal behavior predicted by
the polytropic formulation. In addition, the extra compressibility term found in
Flynn's model was found to affect the bubble motion especially during the collapse,
resulting in slightly smaller pulsation amplitude and collapse phase. The values
of R, predicted by Flynn's theory and polytropic theory are essentially the same as
those predicted by Prosperetti's.

IV. B. 2. Theoretical Values of Temperature, Pressure and Relative Density

The calculated maximum internal temperature (7T,,,) and pressure (P,,,)
reached during the collapse predicted by Prosperetti's and Flynn's theories for the
set of parameters used during the experiment have been plotted in Figs. 56-59. In
Prosperetti's calculations, the temperatures have been averaged over the bubble's
interior in order to compure them with the temperatures predicted by Flynn's
theory. The internal pressure is assumed uniform in both cases. Because of the
isothermal bubble motion of the polytropic formulation, the precdicted pressures
were unreasonably high and the temperatures unreasonably low. We have,
therefore, not included them in this analysis.

The maximum internal temperatures, pressures and relative densities have
been summarized in Table 7, 8 and 9 below. The relative densities, which have
been normalized with respect to equilibrium conditions, were calculated from
Prmas=(By/RpinP. Note that for water, 1.12 < p, < 1.25 whereas for GLY42, 1.12<p, <

1.47 so that higher values are expected for GLY42.
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Table 7. Summary of maximum theoretical temperatures inside 20-25 pm
bubbles for the range of p, used during the experiments,

'Theoretical Range of T, for Single Bubble Pulsations (Kelvin)

DPa (bars) Prosperetti Flynn Prosperetti (Flynn)
water (1.12-1.25) 2,600-7,000 2,600-5,000 2,5600-6,000
GLY42 (1.12-147) 3,000-10,000 2,500-7,000 3,000-8,000

e G et S el A S ) S ) S S D S W00 ARG N B G G e G e et B A G S Rt s et b S S S S S 6 D G e W v G

Table 8. Summary of maximum theoretical pressures inside 20-25 pm
bubbles for the range of p, used during the experiments,

Theoretical Range of P, for Single Bubble Pulsations (bars)

Pa (bars) Prosperetti Flynn Prosperetti (Flynn)
water (1.12-1.25) 1,000-12,000 2,000-7,000 2,000-8,000
GLYd2 (112147 2,000-40,000 2,000-22,000 ©,000-20,000

G D WD S S SN WM G A G b An e Gl T TS VED G W MU S S bt Sl G ek e (e e S G S G4 S N A G Ny BT W G Nk et S s o b S G

Table 9. Summary of maximum theoretical relative densities inside 20-25
um bubbles for the range of p, used during the experiments.

Theoretical Range of p,,, for Single Bubble Pulsations

P4 (bars) Prosperetti Flynn Prosperetti (Flynn)
water (1.12-1.25) 150-500 200400 100400
GLY42 (1.12-147) 200-1300 150-700 200-700

D ML G D MM A SED G SR I G I D ST ML TP G ASH i e S G M G SED BTN Gt GRS G Gk G NS et Ge e G S T S MR A e TR S e § I s G e e — . o

The third column of each Table contains the maximum internal temperatures

(T'mas), pressures (Png,), and relative densities (p,..,) predicted by Prosperetti's
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theory, and those predicted by Flynn's theory are shown in the fourth column,
Note that, in every case, the temperatures and pressures predicted by Prosperetti's
theory are higher than those predicted by Flynn's for the same bubble size, even for
the cases where the pulsation amplitude predicted by Prosperetti's was less, The
fifth column of each Table contains the same quantities calculated using
Prosperetti's formulation with Flyun's radial equation (instead of Keller's). These
values will be referred to as Prosperetti (Flynn)'s. The difference in the
predictions shown in columns four and five is entirely due to the way in which the
internal pressure is obtained by each formulation, i.e., the thermodynamics in the
bubble's interior. Notice how the values of Tpuy) Pmae 8nd Py, predicted by

Prosperetti's theory are lower when Flynn's radial equation is used instead of
Keller's, suggesting that the additional compressibility term plays a significant
role during the collapse. The values of T,..and P, predicted by Prosperetti

(Flynn), however, are still higher than those predicted by Flynn's theory by about
10-20%. The values of p,.. are about the same in both cas=s. These results
indicate that Prosperetti's theory does not allow as much heat to diffuse out into
the liquid resulting in higher temperatures and pressures than Flynn's theory for
the range of parameters considered here.

As stated earlier in Chapter I, the phenomenon of sonoluminescence is
primarily of thermal origin, i. e., caused by high temperatures rather than high
pressures or densities. The determination of the ininimum temperature required
for light emission is, therefore, important in understanding the mechanisms

involved. Since the acoustic pressure threshold for light emission was measured

in this study to he around 1.1 bars, this indicates that, according to the theories,
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the minimum temperature necessary to generate SL is between 2,000 and 3,000 K,
corresponding to relative densities about 100-200. In the second half of this
Section, previously measured temperatures and relative densities in the interior of
cavitation bubbles during SL emission will be compared with the theoretical
values. These previous experiments have been described in Chapter I. Since in
this study sonoluminescence has been observed to be generated only by bubbles
between 15-25 um, it will be assumed that, during all the previous experiments (at
insonation frequencies around 20 kHz), onlj bubbles in this size range were
responsible for the light emission. It should be pointed out that this observation
does not agree with others made in the past by various researchers which
indicate, based on the phase of the light flashes, that SL was also emitted by much
larger bubbles, e.g. 220 um (Jarman et al., 1970). However, strong evidence has
been gathered in this study which indicates that only small bubbles collapsing
radially are capable. of producing high enough temperatures to generate
sonoluminescence.

Relative densities of about 60 were measured by Taylor et al. (1970) and about
40 by Sehgal et al. (1979) (see Table 3 in Chapter I) during spectral studies of
sonoluminescence. These values are smaller than the minimum (100-200)
predicted by the theories at the measured threshold for light emission. Assuming
that SL was produced by bubbles in the size range measured in this study (15-25
pm), tests performed using Prosperetti's theory indicate that a relative density of
60 would not generate temperatures higher than 2000 K, just enough to produce
light emission by most estimates (Saksena et al. 1970). The 10,000 K temperature

reported by Taylor et al. was obtained from spectral measurements assuming
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blackbody radiation, which is now known to be an incorrect assumption. Even an
adiabatic collapse in which the density increased by a factor of 60 would only result
in temperatures less than 5,000 K and pressures less than 1000 bars.

The relative density measured by Sehgal et al. (1979) of 4C is even lower, which
is also rather unexpected, since bubble dynamics theories that include thermal
dissipation predict higher densities at higher insonation frequencies. This is
because, at the higher frequencies, the motion of the active bubbles is more
isothermal (dve to their smaller size), requiring a stronger collapse in order to
generate temperatures high enough to produce sonoluminescence. The
temperature of 2450 K calculated by Sehgal et al. using Young's (1976) equation is,
therefore, much larger than that expected from Flynn's or Prosperetti's theory for
a relative density of 40 and the set of parameters used in Sehgal 's experiment. In
short, a relative density of 40 is too low to generate the temperatures necessary for
light emission.

In a second experiment, Sehgal et al. (1980) reports measurements of the
temperature of sonoluminescence emission of 1350 and 860 in NO- and NO,-
saturated water at 459 kHz, Again, these temperatures are low by most estimates
of the temperatures necessary for light production. Since these experiments
required measuring the spectra of SL, it can be assumed that relatively high
intensities (much above the threshold for light emission) were used during the
experiments to obtain as much light as possible in order to improve the precision
and accuracy of the measurements. It is mainly for this reason that the relative
densities and temperatures obtained from these experiments are believed to be

rather low. It should be pointed cut that some authors justify these results by
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arguing that bubble breakup must occur early during the collapse, preventing the
bubble contents from being compressed as much as would be expected from the
theories, This, however, is not supported by the spark-induced cavitation
experiment performed by Golubnichii et al. (1979), or the observations made
during the present study. Golubnichii et al, measured collapse ratios R, /Rmin=30,
indicating that the cavity remained spherical during most of the collapse. Note
that, in this case, collapse ratios are measured relative to the maximum radius
R,, and should not, therefore, be compared directly with those measured relative to
an equilibrium radius, as is cusiomurily done in acoustic cavitaticn. Since the
cavities generated by electric sparks are mostly composed of vapor, an equilibrium
radius does not exist under normal conditions. Golubnichii et al. also ca'culated a
temperature of 9,000 K and a pressure of 19,000 bars assuming an adiabatic
collapse and a perfect gas inside the cavity.

The most recent and precise measurement of temperatures inside cavitation
bubbles is that by Suslick et al. (1986b), using a comparative rate thermometry
technique in aqueous solutions at 20 kHz. Thevy measured a temperature of 5200
650 K at acoustic intensities of 24 W/cm?, which corresponds to about 8 bars
assuming plane waves. This temperature falls in the middle of the range of the
theoratical temperatures calculated in this study, corresponding to p,~1.3 bars,
much lower than the estiruated 8 bars used in Suslick's experiment. It is,
however, more than sufficient to generate sonoluminescence based on the
evidence collected in this study.

As stated earlier, most experiments in which the temperature of collapsing

cavities was measured probably required high intensity sound fields which
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generated many cavities at once. In addition, transient cavitation was most likely
the prevalent type of cavitation, implying that light emitting cavities did not last for
more than a couple of acoustic periods. In the stable cavitation observed in this
study, it has been determined that an increase in the acoustic pressure amplitude
results in higher temperatures, as evidenced by the increase in the light emitted
from the bubble. In a cavitation field where many bubbles are present, it is not
obvious whether an increase in light emission is due to an increase in the amount
of light emitted by each bubble, or an increase in the number of bubbles emitting
light. Since the light emitted by each bubble should be proportional to the
temperatures reached in its interior, it should be interesting to measure the
dependence of the internal temperature on the acoustic intensity in experiments
such as Suslick's. Furthermore, the internal temperatures measured in
Suslick's experiments, which were performed at much higher pressure
amplitudes, (~ 8 bars as opposed to < 1.5 bars used in this study), indicate that
present theories of bubble pulsations overestimate the internal temperature and
possibly the internal pressure too. This overestimation may be explained by the
failure of the assumptions made in the models. Specifically, the possible
dissociation of the gas molecules due to the high temperatures attained would
increase the number density and, therefore, the internal (gas) pressure, arresting
the bubble collapse sooner. When temperatures of 5,000 K or higher are reached, it
is also very likely that the energy of the collapse begins to go into other chemical
processes, instead of increasing the temperature of the gas. Some of these

processes include dissociation of the gas molecules and ionization. Thus, as the

strength of the collapse increases i.e., larger values of p,, the internal
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temperature is expected to reach a maximum saturation value. In addition, The
models underestimate the effects of energy dissipation due to the compressibility of
the liquid. A highly compressible liquid results in the formation of shock waves

which may carry a significant portion of the collapse energy away from the bubble.

IV. B. 8. Phase of Sonoluminescence vs Bubble Motion

In order demonstrate the simultaneity of SL and the minimum radius of an
acoustically driven bubble, simultaneous traces of the radius of the bubble and the
light emission have been obtained. Fig. 60 is a plot of the experimental results
clearly showing that SL is produced during the collapse of the bubble, These data
were obtained with the light scattering apparatus and the PMT. We were unable
to obtain an appropriate filter for the PMT which would allow the simultaneous
operation of both the laser and the PMT. Thus, an intermediate phase reference
had to be used in order to properly correlate the light scattered with the PMT
output. This common reference was the side pill transducer whose voltage output
was proportional to the acoustic pressure in the cell. In this way, a trace of the
light intensity scattered and the pill voltage output were obtained simultaneously,
transferred to the computer and stored on disk. Immediately after, traces of the
PMT output (with the laser light turned off) and the pill output were also stored or
disk. A graphics program was then used to determine the correlation by plotting
the two traces simultaneously as shown in Fig. 60. Since the two sets of data were
taken within a few seconds of each other, it was ensured that all the experimental

conditions remained identical. The uncertainty in this experiment was estimated
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to be £ 5 degrees and it is mostly due to the time delay introduced by the
photodetector built-in electronics.

The objective of this experiment was to verify the coincidence of SL with the
minimum bubble volume. The results obtained were interpreted as an indication
that SL and the phase of the bubble collapse occurred simultaneously., In the next
Section, this result will be used to study the phase of the motion of cavitation

bubbles by measuring the phase of SL emission.

IV. C. Time to Amplitude Converter System: Sonoluminescence vs Sound Field

1 Single Bubble Cavitation Field

After the simultaneity of the light emission and the collapse of the bubble was
established, the phase of the SL emission was used to study the behavior and the
time evolution of cavitation bubbles as they interacted with the sound field and
with each other. This was done by measuring the phase of the light emitted by the
bubbles in order to obtain the phase of the bubble collapse. In view of the already
established coincidence of the light emission and the bubble collapse, these two
terms will be used interchangeably. In order to interpret the observations made in
multibubble cavitation fields, the results for a single bubble will be examined in
this Section. These data were obtained by enclosing the levitation cell system in
the light tight box and measuring the phase of SL emission as described in Section
E of Chapter II.

Figure 61 shows the phase of SL at approximately 1.1 bars in water, plotted as

a function of time in units of acoustic periods which also corresponded to the
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sampling period. In this data set, a total 2,000 data points were taken
corresponding to approximately 0.1 sec. The small oscillations on these data are
due to 60 Hz line noise which could not be easily filtered. Typical 60 Hz noise levels
were t 1 degree which were far less than the actual fluctuations of the data. This
is an exampl: of the phase of the light emission for a single bubble pulsating
radially. In order to determine if a single bubble were present, the output of the
side pill transducer was monitored. 'This output would become noticeably
irregular and noisy when streamers were present. For a single bubble, however,
the signal was symmetrical except for a small notch, probably due to the shock
wave produced by the bubble collapse. In this case (Fig. 61), the value of the phase
was 201 degrees. A range of values was measured between 190 and 220 degrees for
pressure amplitudes between 1.0 and 1.4 bars in water.

Occasionally, the levitated bubble was visually observed to become unstable for
a fraction of a second, after which stability was restored. This transition was
usually accompanied by a vertical shift in the bubble's position. This new position
was always higher ie., away from the antinode. When the light emission during
this transition was monitored, it was visually observed that the intensity of each
flash was sharply decreased. This occurred simultaneously with a decrease in
the phase of the emission. These observations are illustrated in Fig. 62. The
phase can be clearly seen to decrease sharply during the transition at 600 cycles.
This decrease of the phase may be interpreted as a decrease of the equilibrium
bubble radius i.e., a breakup of the bubble due to surface instabilities. This type of
breakup usually occurs via the ejection of microbubbles (Nyborg and Hughes, 1967;

Neppiras et al., 1969). After reducing its size, the bubble regains its stability due to
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the larger surface pressure (20/R,). This occasional, and sometimes periodic,
breakup can be understood in terms of the bubble response curve s a function of
equilibrium radius (Fig. 23). As the bubble grows, resonances are encountered
and the bubble response increases rapidly, If the surface instability threshold
happens to be below one of these peaks, breakup will occur and the bubble size is
quickly reduced. This cycle may repeat depending on p, and the new value of R,,
among other parameters. In addition, by plotting the pulsation amplitude, R,..,
and the phase of the collapse as a function of R,, a direct correlation between these
two quantities can be established, as shown in Fig. 23 and Fig, 24. Note that when
R, increases {decreases) the phase also increases (decreases). Note that a
change in the radius R, as small as 1 micron can result in the phase of collapse
changing by as much as 20 degrees, depending on the bubble size. Thus, it does
not require a large change in radius to effect a large change in the phase.

1t appears that, before the bubble regains stability, its response amplitude and
size must be decreased. This is not surprising, since instabilities in the gas-liquid
interface are triggered by large accelerations, as shown in Chapter III. Thus,
this observation can be explained as follows: After developing instabilities, the
bubble sheds microbubbles, reducing its size and its response amplitude. Both of
these increase the stability of the bubble and the pulsations become spherically
symmetric again. This behavior is commonly seen in single bubbles at the higher

pressure amplitudes (~1.3-1.4 bars).

In some cases, instabilities occurred repeatedly with a period of a few seconds.

At the higher end of the pressure range for stability, transitions often occurred
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consecutively as shown in Fig, 63. In this case, it may be postulated that the
pressure amplitude was so high that surface waves were easily excited, and the
"bubble was unable to regain its stability. If the residual bubbles were large enough
or close enough to the initiating bubble, coalescence may occur before they can
dissolve. This may explain the bubble growth implied by the rapid increase in the
phase of collapse shown in Fig. 63. Sometimes the bubbie disappears
unexpectedly, as was the case in this particular data set in which the bubble
suddenly stops emitting light around cycle 1250. This bubble disappearance can
also be observed with the unaided eye or through the microscope. A similar type of
bubble annihilation was reported by Nyborg and Hughes (1967) during observation
of cavitation on the surface of a vibrating bar driven at 20 kHz. Using high speed
photography, they reported bubbles which disappeared in less than 6 acoustic
periods. An explanation similar to the above was given by Nyborg et al. (1967) for
this phenomenon.

In summary, we can propose that bubbles grow and breakup in a periodic
fashion during radial pulsations. A breakup is usually reflected by a decrease in
the bubble response and the phase of the collapse. Bubble growth can occur by
coalescence or rectified diffusion and can be detected by an increase of the

response and the phase of the bubble collapse.

IV. C. 2. Multibubble Cavitation Fields

In this Section, the observations made from a cavitation zone composed of

gtreamers such as those illustrated in Figure 31 will be discussed. High speed
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photographs taken during the experiments revealed that these streamers
consisted of fast-moving bubbles which were rapidly coalescing and breaking up.
An example of the measurement of the phase of collapse in water at around 1.3
bars is shown in Fig, 64. In this data set, the phase of collapse appears to change
irregularly between 185 and 215 degrees. Most of the measurements made of the
collapse phase in multibubble cavitation fields were in this range. This range
coincided with the collapse phase measured for single bubbles which were
determined to be between 15 and 20 pm in radius. It thus appears that in a
cavitation field at 20 kHz, bubbles that emit SL are in the range 15 S R, £ 20 pm, SL
is produced by high temperatures and pressures in the interior of the bubbles, and
these high temperatures and pressures are responsible for most cavitation-related
effects. It may then be said that bubbles in the range 15 < R, £ 20 um are the only
active bubbles in cavitation fields at 20 kHz. This range of bubble sizes may be even
smaller since some of the scatter in the measured values of the phase may be due
to fluctuations of the driving pressure. Furthermore, the fact that the range of
values for the phase of collapse of single bubbles and cavitation field bubbles
coincide may be an indication that only bubbles pulsating radially emit SL.
Evidence for this hypothesis is also found in the fact that when a single bubble goes
into surface oscillations, the SL output decreases by an order of magnitude. It was
not uncommon to observe a single bubble pulsating radially and emitting SL
flashes every cycle for as many as 1000 consecutive cycles. However, when surface
waves were excited, as evidenced by dancing motion, the average number of SL

flashes was about one in ten cycles. This seems to imply that a spherical collapse
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is necessary to generate sufficiently high temperatures and pressures in the
interior of the bubble.

In addition, the data displayced in Fig. 65 reveal the same type of cyclic
behavior observed in a single bubble as described in the previous Section. This
behavior was observed often in a multibubble cavitation field, although it was not
always repeatable. It was usually observed at the higher pressure amplitudes
(1.3-1.5 bars). Nevertheless, these data show that the same cyclic behavior
observed in a single bubble also occurs in a multibubble cavitation field. Similarly,
this behavior can be attributed to the breakup of bubbles by surface instabilities
followed by coalescence or rectified diffusion.

In summary, we have observed cyclic behavior in both single and multibubble
cavitation fields. This behavior has been observed before by other investigators and
can be caused by resonances of the bubble motion encountered as the bubble grows.
These resonances trigger surface instabilities which in turn result in a reduction
of the bubble size due to breakup. As the bubbles regrow by rectified diffusion or
coalescence, the process repeats itself. In addition, the coincidence of the phase of
collapse for both single and multibubble cavitation suggests that spherical
collapses are required to generate the high temperatures and pressures

responsible for most cavitation-related effects.
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Chapter V
Summary, Conclusions and Topics for Future Study

V. A. Summary of the Dissertation

The purpose of this dissertation was to increase the understanding of the
dynamics of bubbles in cavitation fields. In trying to reach this goal, the following
accomplishments have besn made:

1. Experimental radius-time curves for single bubbles pulsating radially at
large amplitudes have been obtained. These bubbles were obtained in
water/glycerine mixtures at pressure amplitudes between 1.1 and 1.5 bars at 20
kHz. These bubbles were observed to exhibit sonoluminescence. The pulsation
amplitude, the phase of the collapse and the number of minima have been
measured for a range of pressure amplitudes and bubble sizes.

2. After verifying the simultaneity of the light emission and the bubble
collapse, the phase of the light emission was observed for thousands of acoustic
periods in order to monitor the long-term behavior of bubbles in the cavitation field.

3. The applicability of three theoretical formulations of bubble dynamics has
been evaluated in a range of acoustic pressure amplitudes near the threshold for
sonoluminescence, These theories have been used to evaluate the internal
temperatures and pressures reached during the bubble collapse at the

experimentally determined threshold for light emission.
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V. B. Conclusions

The following conclusions were made from the experimental evidence and the
numerical calculations:

1. Sonoluminescence from stable cavitation at 20 kHz is emitted by bubbles in
the size range 15 20 microns. These bubble are small enough so that, although
pulsating at large amplitudes, they retain the spherical symmetry necessary to
attain the high temperatures required for light emission. Discrepancies were
found between the experimental and theoretical values of the pulsation amplitude,
phase of collapse and the number of rebounds, however. The number of rebounds
was observed to be lower and the amplitude of each rebound larger in amplitude
than expected from the theories. It was concluded that the physical conditions
attained dunng the collapse were outside the limits of the theories.

2. From the observations of the phase of light emissioﬁ, it was concluded that
violently pulsating bubbles often undergo fragmentation and coalescence in a
periodic fashion. This process has a period on the order of 500 acoustic periods,
and varies depending on the acoustic pressure amplitude and other parameters.

3. From the theoretical calculations made for the parameters measured at the
threshold for light emission, it was concluded that internal temperatures in the
range 2,000-3,000K were necessary to produce sonoluminescence. This finding
supports the Chemiluminescent model as the mechanism for light production.
Previous measurements of internal temperatures at p,~8 bars indicate that
present models of bubble pulsutions overestimate the internal temperature and

pressure. Internal temperatures are expected to reach an asymptote as more of
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the collapse energy is deposited into other chemical processes such as dissociation
and ionization.

4. A previously undiscovered stable region exists in the pressure-radius
parameter space above both surface instability and rectified diffusion thresholds
for radially pulsating bubbles. The mechanisms through which this stability is
attained are not yet understood. Nevertheless, the observations made of bubble
stability indicate the existence of a transient cavitation threshold, which had been
observed and predicted previously in other systems. Above this threshold, rapid
bubble collapse promotes surface instabilities which cause the bubble to

disintegrate.

V. C. Topics for Future Study

The following are some of the improvements that can be made to the
experiments performed in this study as well as suggestions for further
investigations.

1. The equilibrium radius of single pulsating bubbles must be determined
accurately in order to confirm the upplicability of the models. Thus, a technique
must be developed to measure bubble radii in the range 15-25 microns. This
technique must be precise (to within 5-10%) and take not more than a couple of
seconds in order to minimize the amount of diffusion in or out of the bubble.

2. Several techniques exist, including the measurement of SL spectra, that
can be used to measure the internal temperatures and pressures during the

collapse of the bubble. One of the difficulties encountered in performing these
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measurements previously, is the inhomogeneity of the cavitation field which
contains an undetermined range of bubble sizes. The use of a single pulsating
bubble to generate sonoluminescence should improve the precision of these
measurements.

3. The low signal-to-noise ratio obtained with the laser scattering technique
for small bubble radii presented a major obstacle to the study of the bubble motion
during the final stages of collapse. Techniques using high speed photography and
holography offering high spatial and temporal resolution may provide important
data on the radial stability of pulsating bubbles.

4, The mechanism or mechanisms through which the radial stability of the
bubble is achieved certainly deserve further study. This mechanism may prove to
be important in understanding the motion of bubbles in moderate to high intensity

cavitation fields.
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